

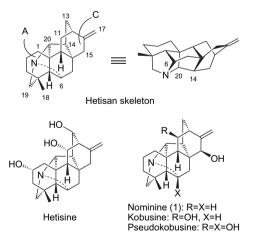
Tetrahedron 62 (2006) 7093-7112

Tetrahedron

Synthetic study of hetisine-type aconite alkaloids. Part 3: Total synthesis of (±)-nominine

Hideaki Muratake, a,* Mitsutaka Natsume a,* and Hiroshi Nakai b

^aResearch Foundation Itsuu Laboratory, 2-28-10 Tamagawa, Setagaya-ku, Tokyo 158-0094, Japan ^bDiscovery Research Laboratories, Shionogi & Co., Ltd, Fukushima-ku, Osaka 553-0002, Japan


> Received 10 March 2006; accepted 12 April 2006 Available online 19 May 2006

Abstract—Completion of the total synthesis of (\pm) -nominine (1) is described in detail. Based on the results of the preceding two papers, total synthesis of (\pm) -nominine was accomplished diverging from the intermediate 7. Thus, following pyrrolidine ring formation through transformation from 7 to 8, the C-ring was constructed by radical cyclization to form 10 from the enyne precursor 9. Subsequent elaboration of the C-ring, followed by formation of the azabicyclic ring system, completed a total synthesis of (\pm) -1. Single-crystal X-ray analysis of (\pm) -1 unambiguously confirmed its molecular structure and racemic crystal structure. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. The hetisine-type aconite alkaloid nominine

The term aconite alkaloid is applied to the diterpene alkaloids isolated from *Aconitum*, *Delphinium*, *Consolida*, *Thalictrum*, and *Spiraea*. These alkaloids are generally classified into five skeletons, atidane, veatchane, cycloveatchane, aconitane, and hetisan (the name of which is derived from hetisine) based on their fundamental frameworks. ^{1,2} Extensive synthetic efforts over the last 40 years have

Scheme 1. Hetisan skeleton and representative hetisine-type aconite alkaloids.

Keywords: Aconite; Alkaloid; (\pm) -Nominine; Hetisan; Radical cyclization; X-ray analysis.

resulted in total syntheses of several alkaloids belonging to the first four of the above five groups. However, the synthesis of even the basic skeleton of the hetisine-type alkaloids, which include hetisine, nominine, kobusine, etc. had remained elusive until we recently reported a total synthesis of (\pm) -nominine (1) (Scheme 1).

Nominine (1) is structurally the simplest hetisine-type aconite alkaloid. Ochiai et al. first isolated 1 as 'Nomi-base I' from *Aconitum sanyoense* Nakai, collected at Nomi, Sakyo-ku, Kyoto prefecture, Japan in 1956.⁴ Sakai et al. gave it the name nominine in 1982 and determined the absolute structure by chemical correlation with kobusine, whose structure was established unequivocally by single crystal X-ray analysis.⁵ The name nominine was redundantly given to an insecticidal indole diterpene in 1989.⁶

1.2. Synthetic background

Discovery of the palladium-catalyzed intramolecular α -arylation reaction of aliphatic ketone, formyl, and nitro groups triggered our synthetic studies leading toward the total synthesis of aconite alkaloids with the hetisan skeleton. Our synthetic efforts culminated in a total synthesis of 1, which was reported in a preliminary communication. In the preceding two papers, we have presented full details of the preparation of compound 2 lacking the C-ring of the hetisan framework, starting from 3 by way of the intermediates 4–7. We employed the acetal ene-reaction to form 6, stereoselective hydrocyanation to form 7, and azabicyclic ring formation to form 2, as well as the above Pd-catalyzed cyclization reaction $(4 \rightarrow 5)$, as the key reactions (Scheme 2). Here, we present full details of the synthesis of 1, diverging from the above-mentioned intermediate 7.

^{*} Corresponding authors. Tel.: +81 3 3700 5492; fax: +81 3 3700 5431; e-mail: hmuratake@itsuu.or.jp

Scheme 2. Outline of the synthetic pathways in the three papers.

We had initially considered synthesizing 1 from 2 through Cring construction followed by functionalization at C15 with a β -hydroxy substituent. However, taking into consideration that the strong basicity of 2 seriously restricts its versatility as a synthetic intermediate, we decided to construct the bicyclo[2.2.2]octane ring (C-ring) from the intermediate 7, keeping the nitrogen protected as a carbamate, prior to the creation of the azabicyclic ring system for completion of the total synthesis of 1.

2. Results and discussion

An outline of the reaction sequence described in this paper is shown in Scheme 3. Compound 7 was transformed to a pentacyclic intermediate 8 according to the method reported in the preceding paper. Ompound 8 was led to an enyne derivative 9, which was then subjected to radical cyclization reaction to secure the hexacyclic intermediate 10. C-ring

Scheme 3. Outline of the synthesis of 1 from 7.

elaboration followed by O- and N-deprotections and azabicyclic ring formation completed the total synthesis of (\pm) -nominine (1). These results constitute the first total synthesis of a hetisine-type aconite alkaloid. We present below full details of not only the reactions along Scheme 3, but also reaction procedures that were ultimately not employed for the total synthesis.

2.1. Preparation of pentacyclic intermediates 16 and 18 from 7 by way of 13 and 8

In the preceding paper,¹⁰ we formed the pyrrolidine ring after deprotection of the C20 hydroxy group. In this paper, this protecting group was retained until the final stage of the synthesis with a change of the functional group at the primary hydroxy part of the 2-hydroxyethyl protecting group. The protecting group played a pivotal role in this total synthesis in that it prevented a possible retro-ene reaction with the bond fission of C14 and C20, and it was extremely stable under a wide variety of reaction conditions encountered in the synthetic procedures.

Kinetic enolate formation from 7 with lithium diisopropylamide (LDA) and simultaneous trapping with chlorotrimethylsilane (TMSCl) afforded two products, 11 and 12 (Scheme 4). The latter was a trimethylsilylated compound at the methyl carbon of the acetyl group. Compound 11 was the product derived from the corresponding O-silylated intermediate, which was hydrolyzed during extractive isolation. Of the two products, 11 was subjected, as before, ¹⁰ to

Scheme 4. Preparation of 16 and 18 from 7 by way of 13 and 8: (a) TMSCl, LDA, THF, 11 (79%), 12 (12%); (b) LiAlH₄, THF, then Boc_2O or ClCbz, Et_3N , CH_2Cl_2 , 13 (62%) from 11, 14 (16%) from 11, 13 (55%) overall from 7, 14 (10%) overall from 7, 8 (63%) overall from 7, 15 (4%) overall from 7; (c) NaBH₃CN, 2.5% HCl-H₂O, MeOH, 16 (91%) from 13, 17 (93%) from 14, 18 (90%) from 8, 19 (91%) from 15 and (d) K_2CO_3 , MeOH, 16 (quant.) from 17, 18 (quant.) from 19.

the lithium aluminum hydride (LAH) reduction followed by protection with di-*tert*-butyl dicarbonate (Boc₂O) to afford 13 (62%) and 14 (16%). As the desired compounds were obtained, the above three operations [enol silylation, LAH reduction, protection with Boc₂O or benzyl chloroformate (ClCbz)] were carried out on 7 without isolation of 11 and 12 to yield 13 (55%) and 14 (10%) or 8 (63%) and 15 (4%), respectively, overall from 7. Compounds 8 and 15 with the Cbz group functioned as intermediates leading toward 1 in the event, since we could not find suitable reaction conditions to cleave the Boc group after C-ring formation (vide infra).

These four compounds 13, 14, 8, and 15 were separately reduced with sodium cyanoborohydride (NaBH₃CN) in a weak acid solvent to afford 16, 17, 18, and 19 in high yields, respectively. Then the carbonates 17 and 19 were converged to 16 and 18, respectively, by treatment with potassium carbonate (K₂CO₃) in methanol (MeOH).

2.2. Some trials of C-ring formation from 16

Before description of the C-ring formation by radical cyclization from the enyne precursor **9** to form **10** (Scheme 3), we report here some other attempts to achieve the C-ring formation.

2.2.1. C-ring formation by aldol reaction. Compounds 16 and 18 were led to the benzoates 20 and 21, respectively, then oxidized with chromium oxide (CrO₃) according to the preceding paper (Scheme 5).¹⁰ Different from the

previous case, where the pyrrolidine ring had not yet been formed, the oxidation with CrO₃ and 3,5-dimethylpyrazole did not afford satisfactory results (Table 1). Various amounts of the oxidant were tested (runs a-d), and 6 equiv of CrO₃ (run b) was found to give the best yields of 22 (45%) and 23 (28%). Nevertheless, this condition could not adapted to **21** with the Cbz group, since **24** (12%) and **25** (6%) were obtained only in low yields with 50% recovery of 21 (run e). Further excess of the oxidant resulted in decreased yields of 24, 25, and as well as recovery of 21. Although various conditions $^{11-14}$ for the allylic oxidation of 21 were attempted, the only condition affording better results than run e was oxidation with CrO₂ and tert-butvl hydroperoxide (t-BuOOH), 14 which still gave unsatisfactory yields of 24 (22%) and **25** (16%), along with recovery of **21** in 44% (run f). Since oxidation of 21 gave only disappointing results, we employed 22 and 23 for further transformation in this route.

Table 1. Allylic oxidation of 20 and 21 with CrO₃ (yield: %)

Run ^a	Sub.	CrO ₃ (equiv)	Additive ^b (equiv)	22	23	24	25	Recovery
a	20	4	DP (4.3)	29	20			30
b	20	6	DP (6.7)	45	28			4
c	20	8	DP (8.7)	34	20			0
d	20	12	DP (13)	24	15			0
e	21	6.3	DP (7.4)			12	6	50
f	21	1.75	BH (10)			22	16	44

a All reactions were carried out in CH₂Cl₂.

Scheme 5. Some trials for the C-ring formation: (a) BzCl, Et₃N, CH₂Cl₂, **20** (99%) from **16**, **21** (97%) from **18**; (b) H₂, Pd/C, MeOH, **26** (quant.) from **22**, **27** (quant.) from **23**; (c) K₂CO₃, MeOH, **28** (quant.) from **26**, **29** (quant.) from **27**; (d) PCC-Al₂O₃, CH₂Cl₂, **30** (90%) from **28**, **31** (75%) from **29**, **35** (quant.) from **33**, **35** (quant.) from **34**; (e) dimethyl (1-diazo-2-oxopropyl)phosphonate, K₂CO₃, MeOH, **32** (34%), **33** (33%), **34** (22%), **41** (96%) from **39**, **42** (91%) from **40**; (f) BH₃·SMe₂, THF then H₂O₂, NaOH, **36** (48-17%), **37** (26-9%), **38** (18-62%); (g) TEMPO, PhI(OAc)₂, CH₂Cl₂, **39** (75%) from **36**, **40** (75%) from **37**; (h) NaH, imidazole, THF, then CS₂, then MeI, **43** (85%) and (i) Bu₃SnH, AIBN, toluene, **44** (85%).

^b Additive, DP: 3,5-dimethylpyrazole; BH: t-BuOOH.

The enones 22 and 23 were converted to ketoaldehydes 30 and 31 in three steps with conventional methods [(i) hydrogenation on palladium for 26 and 27, (ii) alcoholysis with potassium carbonate (K_2CO_3) for 28 and 29, and (iii) oxidation with pyridinium chlorochromate (PCC)–aluminum oxide (Al_2O_3) for 30 and 31]. Treatment of 30 with dimethyl (1-diazo-2-oxopropyl)phosphonate 15 and K_2CO_3 as before 10 provided the desired compound 32, but in only 34% yield, together with 33 and 22% yields of the two isomeric aldol products 33 and 34, whose stereochemistry at the C16 hydroxy group remains unclear. While these aldols 33 and 34 were readily converted to diketone 35 with PCC– Al_2O_3 , reaction of the compound 35 with methylenetriphenylphosphorane gave no desired product but recovery in a preliminary experiment.

2.2.2. C-ring formation by radical cyclization from xanthate. As the attempted route of allylic oxidation followed by aldol reaction proved tricky, we next explored the route by way of the radical intermediate generated from xanthate. The hydroboration—oxidation reaction of **16** provided three products, **36**, **37**, and **38**. We could not find suitable reaction conditions to prevent the formation of the dihydro derivative **38**, and its yield varied from 18 to 62% even though the same equivalent ratio of borane—dimethyl sulfide complex (BH₃·SMe₂) was used, with a corresponding yield variation of **36** (48–17%) and **37** (26–9%). The direction of the hydroxy group of **36** and **37** was determined by the fact that H12 of the major product **36** (equatorial OH) appeared at δ 4.22 (ddd, J=10, 10, 7.5, 7.5 Hz) in the ¹H NMR spectrum.

The primary alcohol of the obtained diols 36 and 37 was selectively oxidized with iodobenzene diacetate [PhI(OAc)₂] and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) to yield **39** and **40**, respectively. These products were led to the alkynes 41 and 42 in high yields. Our choice of method to cyclize the C-ring from the alkyne-alcohols 41 and 42 was the intramolecular radical cyclization reaction via thioimidazolide or xanthate ester.¹⁷ As the attempted formation of thioimidazolide from 41 or 42 with thiocarbonyldiimidazole in refluxing 1,2-dichloroethane resulted in an intractable mixture from the former or recovery of the starting material from the latter, we next tried to form a xanthate ester as the radical precursor. According to the literature, 18 the equatorial alcohol 41 was easily converted to the corresponding xanthate 43 by successive treatment with sodium hydride (NaH)-imidazole in boiling tetrahydrofuran (THF), carbon disulfide (CS₂), and then iodomethane (MeI). On the other hand, the axial alcohol 42 did not afford the xanthate at all under the same or modified [in THF-dimethylformamide (DMF)] conditions. Radical reaction of 43 with tributyltin hydride (Bu₃SnH) in the presence of 2,2'-azobisisobutyronitrile (AIBN) readily provided the desired hexacyclic compound 44 in a high yield. However, all attempts to remove the methoxymethyl (MOM) or Boc group from 44 failed due to the instability of the newly formed methylenebicyclo[2.2.2]octane ring of 44 under acidic conditions.

Thus, we could acquire the desired compound 44 from 16. This route, however, suffered from the following three drawbacks: (1) the reproducibility of the hydroboration—oxidation used to form 36 from 16 was poor; (2) the xanthate could not be obtained from the axial alcohol 37; (3) the

MOM and Boc groups could not be removed after the formation of the methylenebicyclo[2.2.2]octane ring. Therefore, we decided to explore another C-ring formation method starting from 16 and 18 in a more straightforward manner.

2.3. C-ring formation from 16 and 18 by radical cyclization of enyne precursor

As described above, it turned out that (1) the methylene-bicyclo[2.2.2] octane framework was more sensitive than expected to acidic conditions, and (2) the radical cyclization method was effective for construction of this framework, but the examined xanthate route was problematic. Taking these points into consideration, we decided to construct the C-ring by the radical cyclization of an enyne precursor prepared from 16 and 18.

2.3.1. Preparation of enyne radical cyclization precursors. Compounds **16** and **18** were oxidized separately with PCC–Al₂O₃ as usual to get the aldehydes **45** and **46**, respectively (Scheme 6). These were led to the enyne derivatives **47** and **48**, respectively, with dimethyl (1-diazo-2-oxopropyl)-phosphonate¹⁵ and K₂CO₃ as before. The MOM group of **48** was cleaved at this stage to yield **9**, which was finally employed as the radical cyclization precursor. This is because of the instability of the methylenebicyclo[2.2.2]octane framework under acidic conditions, as noted above. Compounds **47** and **9** were the precursors of choice for the next radical cyclization reaction.

Scheme 6. Preparation of enyne radical cyclization precursors: (a) PCC–Al $_2$ O $_3$, CH $_2$ Cl $_2$, **45** (91%) from **16**, **46** (84%) from **18**; (b) dimethyl (1-diazo-2-oxopropyl)phosphonate, K $_2$ CO $_3$, MeOH, **47** (96%) from **45**, **48** (98%) from **46** and (c) 5% HCl, DME–H $_2$ O (3:1), **9** (96%) from **48**.

2.3.2. C-ring formation from 47 and 9. At first, compound 47 was subjected to radical cyclization reaction (Scheme 7, Table 2). The reactions with Bu₃SnH in the presence of AIBN in refluxing benzene or toluene (runs a–d) according to the protocol of Stork¹⁸ afforded the desired compound 44 and a stannylcyclopropane derivative 49 as a by-product after destannylation of the vinyl stannane products with silica gel. Compound 44 was identical with an authentic specimen obtained via the xanthate route from 43 (Scheme 5). The reactions with 10 equiv of Bu₃SnH gave comparable results in either benzene (run a) or toluene (run b). The

Scheme 7. C-ring formation from 47 and 9 by radical reaction or reductive palladium catalyst: (a) Bu₃SnH, AIBN (20 mol %), benzene or toluene under reflux, then SiO₂, CH₂Cl₂ (for yields see Table 2); (b) Pd₂(dba)₃·CHCl₃, poly(methylhydrosiloxane) (PMHS), *N*,*N*′-bis(benzylidene)-1,2-ethylenediamine, HOAc, benzene under reflux (for yields see Table 2); (c) slow addition of Bu₃SnH in toluene into dilute solution of 9 and AIBN in toluene under reflux, then SiO₂, CH₂Cl₂, 10 (57%), 52 (31%), 53 (8%); (d) cat. OsO₄, NaIO₄, THF-H₂O, 54 (quant.) and (e) TMSCl, (TMS)₂NLi, THF, then aq HCl-THF, 55 (81%).

Table 2. C-ring formation from 47 to form 44

Run	Bu ₃ SnH (equiv)	Solvent	Time (h)	44 (%)	49 (%)	Recovery (%)
a	10	Benzene	2	40	50	_
b	10	Toluene	0.5	43	49	_
c	5	Benzene	2	33	52	_
d	1.3	Toluene	3	50	18	29
e ^a	_	Benzene	0.5	19	_	_

^a Reaction was carried out with Pd₂(dba)₃·CHCl₃, PMHS, N,N'-bis(benzylidene)-1,2-ethylenediamine, and HOAc; **50** (19%) and **51** (25%) were also isolated.

reaction in benzene with 5 equiv of Bu_3SnH resulted in lowering of the yield of $\bf 44$ (run c). The use of a slight excess amount (1.3 equiv) of Bu_3SnH brought about a better result, giving rise to $\bf 44$ in 50% yield along with $\bf 49$ in 18% yield and a recovery of $\bf 47$ in 29% yield (run d). Although the palladium-catalyzed reductive cyclization was adopted for $\bf 47$, $\bf 44$ was obtained in only 19% yield, and the cyclopropane derivative $\bf 50$ (19%) and simply reduced compound $\bf 51$ (25%) were isolated as by-products (run e).

These results indicated that coexistence of an excess amount of Bu₃SnH with 47 increased the formation of the by-product 49. With this in mind, we executed the radical cyclization of 9 as follows so as to allow the substrate 9 to react with small amounts of Bu₃SnH at a time (Scheme 7). A solution of Bu₃SnH (70 mM) in toluene was slowly added dropwise (over 1.5 h) to a solution of 9 (5.5 mM) and a catalytic amount of AIBN (22 mol %) in toluene at reflux to secure the desired compound 10 in 57% yield, together with by-products **52** (31%) and **53** (8%). The structure of **53** was confirmed by transformation to the corresponding cyclopentanone derivative **54** (IR: $\nu_{\text{max}} = 1730 \text{ cm}^{-1}$) through the Lemieux oxidation. The formation of the by-product 52 was attributable to radical trapping with Bu₃SnH at C17 after two radical cyclizations, 6-exo (endo)-trig and 3-exo-trig (vide infra). Therefore 9 was led to the trimethylsilyl derivative 55, and this was subjected to the radical reaction for the purpose of avoiding formation of 52. This attempt, however, resulted in complete recovery of 55, probably due to failure of formation of the initial vinyl radical.

2.3.3. Reaction mechanism of the radical cyclization. A likely reaction mechanism for the radical cyclization is shown in Scheme 8, taking the reaction from $\bf 9$ as an example. The reaction starts with the pyrolysis of AIBN to generate isobutyronitrile radical by elimination of molecular nitrogen. The radical abstracts hydrogen radical from the gradually dropped Bu₃SnH to give tributyltin radical. Then the tin radical adds to the alkyne of $\bf 9$ to form radical intermediate $\bf A$. There are two modes for the radical cyclization from $\bf A$, i.e., 6-*exo-trig* mode giving radical intermediate $\bf B$ and 5-*exo-trig* mode giving $\bf C$. The desired former mode is also conceivable as 6-*endo-trig*, as the olefin $\Delta_{12,13}$ was originally involved in a six-membered ring. Although formation of the undesired $\bf C$ is in danger of taking precedence over

The intermediate **B** could plausibly be derived from **C** by way of the cyclopropane-radical intermediate **D** through homoallyl-homoallyl radical rearrangement.²¹ But the facts shown in Table 2, runs a–d, suggest that the intermediate **B** is directly generated from **A**, because the compound corresponding to **53** derived from a **C**-type intermediate was not isolated in runs a–d, where **47** and AIBN was simply heated with a coexisting excess amount of Bu₃SnH from the start.

that of **B** in accordance with the Baldwin rule, ²⁰ in practice,

we were able to get 10 as the main product.

The radicals **B** and **C** were trapped by Bu₃SnH to form 10 and 53, respectively, after destannylation from vinyl stannane by stirring with SiO₂ in CH₂Cl₂. The intermediate **D**, generated from **B** and/or **C** in 3-exo-trig mode, abstracts a hydrogen radical to yield the by-product 52. There appears to be fast equilibration between **B** (thermodynamically favored) and **D** (kinetically favored), judging from the results that 49 was the main product in runs a–d (Table 2), while the desired 10 became the main product from 9 when Bu₃SnH was slowly added.

2.4. Completion of the total synthesis of (\pm) -nominine (1) from 10

The remaining requirements to obtain 1 from 10 are: (i) introduction of 15 β -OH and (ii) construction of the azabicyclic ring system after deprotections of oxygen and nitrogen.

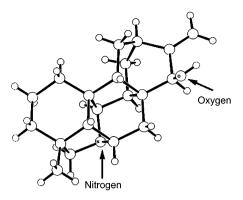
Scheme 8. Reaction mechanism for the radical cyclization of 9 to form 10, 52, and 53.

2.4.1. Introduction of 15β-OH. Prior to the oxidation at C15, the hydroxy group was transformed to a bromide **57** by way of a mesylate **56** (Scheme 9). The 2-bromoethyl group is a convenient precursor for the unprotected 20-hydroxy derivative, as reported in the preceding paper. Attempted direct conversion of **10** to **57** with Br₄C and Ph₃P as before, however, failed due to instability of the methylenebicyclo[2.2.2]octane framework of **10** under the slightly acidic reaction conditions.

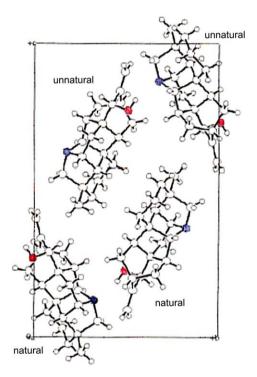
The high reactivity of the framework turned out to be favorable in the next oxidation, as follows. Exposure of **57** to *tert*-butyl hydroperoxide (t-BuOOH) and selenium dioxide (SeO₂) readily afforded the enone **58** (77%), allyl alcohol **59** (14%), and enal **60** (trace amount). The 15α -hydroxy compound **59**, with unnatural C15 configuration, was oxidized quantitatively to **58** with manganese dioxide (MnO₂). The desired 15β -hydroxy compound **61** was secured by the

reduction of **58** with sodium borohydride (NaBH₄) and cerium chloride (CeCl₃·7H₂O) in MeOH. The stereochemistry of **59** and **61** is described below. These results mean that both oxidizing agent for **57** and reducing agent for **58** attack C15 exclusively from the α side. We cannot give a satisfactory explanation for such stereoselectivity in spite of the symmetric nature of the surroundings of C15 of **57** and **58** in the methylenebicyclo[2.2.2]octane framework.

2.4.2. Stereoconfiguration of 59 and 61. The stereochemistries of **59** and **61** were determined on the basis of the rule reported by Kawazoe et al. (Scheme 10).²² Thus, in the ¹H NMR spectra, the signals for 7α -H of **59** and 7β -H of **61** are shifted downfield by the influence of the vicinal *syn* 15-hydroxy group (the signals due to the 7α - and 7β -protons of **59**, **61** are easily discriminable by their *J* values with H6). Furthermore, the signals due to the corresponding hydrogen atom of the acetylated compounds **62** and **63** are shifted


Scheme 9. Completion of the total synthesis of (\pm) -nominine (1) from 10: (a) MsCl, Et₃N, CH₂Cl₂, 56 (97%); (b) LiBr, acetone, 57 (90%); (c) t-BuOOH, SeO₂, CH₂Cl₂-H₂O, 58 (77%), 59 (14%), 60 (trace); (d) MnO₂, CH₂Cl₂, 58 (quant.) from 59; (e) Ac₂O, pyridine, CH₂Cl₂, 62 (93%) from 59, 63 (93%) from 61; (f) NaBH₄, CeCl₃·7H₂O, MeOH, 61 (quant.); (g) Zn, NH₄Cl in i-PrOH-H₂O (14:1), 64 (97%); (h) Et₃SiH, cat. Pd(OAc)₂, cat. Et₃N, CH₂Cl₂, then SOCl₂, pyridine, CH₂Cl₂, 65 (80%) overall from 64 and (i) K₂CO₃ in MeOH, (\pm) -nominine (1) (95%).

upfield in accordance with the rule [δ =2.38–2.58 ppm for 7 α -H of **62** and δ ≈2.0–2.2 ppm for 7 β -H of **63** (overlapping with other signals)]. Consequently, it was clarified that the 15-hydroxy group of **59** has the unnatural α -configuration, while **61** has the natural β -configuration. In the ¹H NMR spectrum of **62**, the fact that a weak NOE enhancement (ca. 2.1%) was observed at δ 7.24–7.39 (phenyl protons of the Cbz group) on irradiation of the singlet at δ 1.48 (methyl protons of the acetyl group) also gave support to the above assignment.


Scheme 10. Structure assignments of 59 and 61.

2.4.3. The final stage of the total synthesis. Now the synthesis reached its final stage. The 2-bromoethyl group of 63 was readily removed to provide 64 in a high yield by the method reported before, i.e., stirring with zinc (Zn) and ammonium chloride (NH₄Cl) in refluxing 2-propanol/H₂O (14:1) (Scheme 9). The protecting group of the 20-hydroxy group, originating from ethylene glycol, had been retained for 21 steps, since it was first introduced at the ene reaction in the preceding paper. 9 The next task is removal of the Cbz group. Hydrogenation or Birch reduction, generally used for this purpose, cannot be employed for 64, as it contains olefin and ester groups. The cleavage of the Cbz group was executed with triethylsilane (Et₃SiH) in the presence of palladium acetate [Pd(OAc)₂] and triethylamine (Et₃N) according to the literature method.²³ The resulting aminoalcohol was then subjected, without purification other than extractive isolation, to azabicyclo ring formation with thionyl chloride (SOCl₂) and pyridine²⁴ to furnish *O*-acetylnominine (65) in good yield. The target alkaloid, (\pm) -nominine (1) was easily obtained from 65 by conventional alcoholysis with K₂CO₃ in MeOH.

2.4.4. Identity with the natural alkaloid and single-crystal X-ray analysis. The spectral data (MS, IR, 1 H NMR, and 13 C NMR) of the synthesized (±)-1 were indistinguishable with those of natural nominine (see the Section 4). However, these data do not verify the synthesized specimen to be a racemate. Therefore, we carried out a single-crystal X-ray analysis. The molecular structure of (±)-1 was proved to be identical with that of nominine (Fig. 1). This provides a direct demonstration of the β-configuration of the 15-hydroxy group, which had been assigned by chemical correlation of the

Figure 1. Molecular structure of (\pm) -nominine (1).

Figure 2. Crystal structure of (\pm) -nominine (1).

natural nominine with kobusine. Furthermore, the crystal structure of (\pm) -1 revealed that the analyzed single crystal is racemic (Fig. 2). Thus, the X-ray analysis confirmed the validity of the total synthesis executed according to the schemes described in this and the preceding two papers. It was fortunate that recrystallization of (\pm) -1 gave a racemic crystal, since spontaneous resolution occurs occasionally during recrystallization. A single crystal of the intermediate 66, incidentally, was proved to be optically active by X-ray analysis. 7c,9

3. Conclusion

In summary, a synthetic route to (\pm) -nominine (1) from 7 was established, involving radical cyclization for the C-ring formation $(9 \rightarrow 10)$, stereoselective introduction of the 15 β -hydroxy group into 10, as well as azabicyclic ring construction to afford (\pm) -1. The work described in this and the two preceding reports ^{9,10} constitutes a 40-step total

synthesis of (\pm) -1 starting from 1-bromo-2-(2-iodoethyl)-4-methoxybenzene in 0.15% overall yield (ca. 85% yield per step). This is the first total synthesis of a hetisine-type aconite alkaloid, of which nearly 100 have been isolated up to now. Over 60 years have elapsed since hetisine was isolated²⁵ as the first example of an aconite alkaloid with the hetisan skeleton, and over 40 years since its structure was elucidated by X-ray analysis.²⁶

4. Experimental

Melting points were determined on a Yanagimoto micromelting point apparatus (hot plate), and are not corrected. MS and high-resolution MS (HRMS) were recorded on a Hitachi M-80B spectrometer in direct inlet mode at an ionizing voltage of 70 eV, and figures in parentheses indicate the relative intensities. IR spectra were measured on a Shimadzu IR-460 spectrophotometer. ¹H NMR spectra were obtained on a Varian Mercury 300 (300 MHz) in CDCl3 unless otherwise specified, and coupling constants (J values) are rounded to the nearest 0.5 Hz. ¹³C NMR spectra were measured on a Varian Mercury 300 (75 MHz) in CDCl₃ and ¹³C multiplicities are shown in parentheses as CH₃ (primary), CH₂ (secondary), CH (tertiary), and C (quaternary). ¹³C NMR of compound **16** and subsequently synthesized compounds with a Boc or Cbz group on the nitrogen could not be determined due to the presence of rotational isomers at ambient temperature. The NMR signals were assigned using proton decoupling techniques, as well as gCOSY, DEPT, gHSQC, gHMBC and/or NOESY spectra. Some characteristic signals for ¹H and ¹³C NMR were selected and assigned as HX and CX, respectively, where X represents hetisan carbon numbering. Column chromatography was conducted on silica gel (SiO₂, Fuji Davison BW 200) or aluminum oxide (Merck, aluminum oxide 90), and the weight of SiO₂ or Al₂O₃ and the eluting solvent are indicated in parentheses. Preparative TLC (PTLC) was carried out on glass plates (20×20 cm) coated with Merck Silica gel 60PF₂₅₄ (0.8 mm thick) unless otherwise specified and the developing solvent is indicated in parentheses. Usual work-up refers to washing of the organic layers with water or brine, drying over anhydrous Na₂SO₄, and evaporating off the solvents under reduced pressure. Tetrahydrofuran (THF) was distilled from sodium/benzophenone ketyl prior to use.

4.1. Preparation of 16 and 18 from 7 (Scheme 4)

4.1.1. Preparation of 11 and 12 from 7. Butyl lithium (BuLi, 1.57 M in hexane, 0.56 ml, 0.879 mmol) was added to a cooled (-18 °C) solution of diisopropylamine (*i*-Pr₂NH, 164 µl, 1.17 mmol) in THF (2 ml) under an Ar atmosphere and the mixture was stirred at that temperature for 10 min. The resulting solution was cooled to -78 °C and to this were added TMSC1 (0.28 ml, 2.21 mmol) and a THF (2 ml) solution of 7 (13 mg, 29.2 µmol) in this order. After the mixture had been stirred at -78 °C for 30 min, Et₃N (0.61 ml, 4.38 mmol) was added and the resulting mixture was stirred for 5 min. Saturated NaHCO₃–H₂O was added and the whole was extracted with CH₂Cl₂. The organic layer was successively washed with saturated CuSO₄–H₂O, saturated NaHCO₃–H₂O, and then

treated as usual. Separation by SiO2 column chromatography [8 g, hexane–EtOAc (3:1)] afforded **11** (12 mg, 79%) and 12 (2 mg, 12%) in order of decreasing polarity. 11: Colorless glass. HRMS Calcd for C₂₈H₄₃NO₆Si: 517.2857. Found: 518.2853. MS *m/z*: 517 (M⁺, 3), 472 (2), 428 (2), 351 (16), 247 (81), 148 (14), 105 (13), 89 (17), 73 (59), 45 (100). IR (CHCl₃) cm⁻¹: 2225, 1726, 1635. ¹H NMR δ : 0.30 (9H, s), 1.05 (1H, ddd, J=12.5, 12.5, 4 Hz, H1), 1.25(1H, ddd, J=14.5, 14.5, 3.5 Hz, H3), 1.51-1.77 (3H, m),1.60 (3H, s, H18), 1.92–2.15 (4H, m), 2.04 (3H, s), 2.21 (1H, dd, J=19, 5 Hz, H11), 2.29 (1H, d, J=2 Hz, H5), 2.30 (1H, br d, J=19 Hz, H11), 2.54-2.61 (1H, m, H14), 3.35 (3H, s), 3.48-3.75 (4H, m), 4.03-4.18 (2H, m, $CH_2OAc)$, 4.54 (1H, d, J=6 Hz, H20), 4.63 (1H, d, J=6.5 Hz, CH_2OMe), 4.67 (1H, d, J=6.5 Hz, CH_2OMe), 4.82 (1H, d, J=2 Hz, H7), 5.47–5.62 (2H, m). ¹³C NMR δ : 0.3 (CH₃×3, SiMe₃), 20.4 (CH₂, C2), 21.1 (CH₃), 26.7 (CH₂, C11), 29.6 (CH₂, C1), 30.8 (CH₃, C18), 31.2 (CH₂, CH₂CH₂OAc), 33.3 (C, C4), 40.5 (CH₂, C3), 41.4 (C, C8), 49.1 (CH, C14), 48.7 (C, C10), 50.9 (CH, C9), 55.0 (CH₃, CH₂OCH₃), 58.5 (CH, C5), 62.3 (CH₂, CH₂OAc), 66.6 (CH₂, CH₂OMOM), 68.4 (CH₂, CH₂CH₂OMOM), 83.9 (CH, C20), 96.2 (CH₂, OCH₂OMe), 111.9 (CH, C7), 124.0 (C, CN), 125.1 (CH, C12 or C13), 126.4 (CH, C12 or C13), 149.8 (C, C6), 170.8 (C, OCOCH₃). **12**: Colorless glass. HRMS Calcd for $C_{31}H_{51}NO_6Si_2$: 589.3252. Found: 589.3241. MS m/z: 589 (M⁺, 3), 574 (1), 558 (1), 544 (1), 500 (2), 351 (22), 247 (100), 148 (13), 105 (18), 89 (19), 75 (15), 73 (87), 59 (18), 45 (81). IR (CHCl₃) cm⁻¹: 2230, 1705, 1638. ¹H NMR δ : 0.11 (9H, s, COCH₂SiMe₃), 0.30 $(9H, s, OSiMe_3), 1.04$ (1H, ddd, J=12.5, 12.5, 4 Hz),1.19–1.31 (1H, m), 1.53–1.74 (3H, m), 1.88 (2H, s, COCH₂Si), 1.92–2.15 (4H, m), 1.60 (3H, s), 2.17–2.36 (2H, m), 2.78 (1H, d, J=2 Hz, H5), 2.54–2.60 (1H, m), 3.35 (3H, s), 3.48-3.75 (4H, m), 3.99-4.13 (2H, m), 4.53 (1H, d, J=6 Hz, H20), 4.63 (1H, d, J=6.5 Hz), 4.67 (1H, d, J=6.5 Hz), 4.81 (1H, d, <math>J=2 Hz, H7), 5.47-5.62 (2H, m).

4.1.2. Preparation of 13 and 14 from 11. LAH (40 mg, 1.05 mmol) was added to a solution of 11 (11 mg, 21.3 µmol) in THF (4 ml) and the mixture was refluxed with stirring under an Ar atmosphere for 2 h. The mixture was allowed to cool in an ice bath, and water-saturated Et₂O (2 ml) was slowly added dropwise to it to decompose excess LAH. Volatile materials were evaporated off and the residue was dried over P₂O₅ in vacuo for 3 h. To a slurry of the residue in CH₂Cl₂ (1.5 ml) and Et₃N (0.44 ml, 3.16 mmol) was added Boc_2O (150 μ l, 0.640 mmol) at 0 °C under an Ar atmosphere, and the resulting mixture was stirred at 0 °C for 10 min and at 19 °C for 18 h. Saturated NaHCO₃-H₂O was added and the whole was extracted with CH₂Cl₂. Usual work-up and separation by PTLC [benzene-EtOAc (4:1)] afforded **13** (6.5 mg, 62%), and 14 (2 mg, 16%) in order of decreasing polarity. 13: Colorless glass. HRMS Calcd for C₂₈H₄₃NO₆: 489.3088. Found: 489.3079. MS m/z: 489 (M⁺, 4), 389 (3), 344 (7), 317 (10), 300 (18), 282 (13), 261 (70), 246 (15), 57 (100), 45 (92), 41 (33). IR (CHCl₃) cm⁻¹: 1682. ¹H NMR δ: 1.12 (3H, s), 1.12-1.22 (1H, m), 1.33-1.49 (2H, m), 1.52 (9H, s), 1.53-1.64 (2H, m, including OH), 1.67 (1H, ddd, J=13.5, 7.5, 6.5 Hz, CH_2CH_2OH), 1.75–1.90 (1H, m), 1.94-1.99 (1H, m), ca. 1.97-2.04 (1H, m), 2.07 (1H, ddd, $J=13.5, 7.5, 6 \text{ Hz}, CH_2CH_2OH), 2.21 (1H, br dddd, <math>J=19$,

5, 2.5, 2.5 Hz, H11), 2.32 (1H, br d, J=19 Hz, H11), 2.42 (1H, ddd, J=6.5, 6, 1.5 Hz, H14), 2.49 (1H, d, J=3 Hz, H5), 3.09 (1H, d, J=11 Hz, H19), 3.29 (1H, ddd, J=10.5, 5.5, 5 Hz, CH₂CH₂OMOM), 3.36 (3H, s), 3.48 (1H, ddd, J=10.5, 5, 4.5 Hz, CH_2CH_2OMOM), 3.57 (1H, d, J=11 Hz, H19), ca. 3.60–3.67 (2H, m), 3.68–3.86 (2H, m), 3.77 (1H, d, J=6 Hz, H20), 4.62 (1H, d, J=6.5 Hz, OCH_2OMe), 4.65 (1H, d, J=6.5 Hz, OCH_2OMe), 5.37 (1H, br s, H7), 5.51 (1H, dddd, J=9.5, 6.5, 1.5, 1.5 Hz, H13), 5.58 (1H, ddd, J=9.5, 3.5, 2.5 Hz, H12). ¹³C NMR δ : 17.6 (CH₂), 22.0 (CH₂), 26.7 (CH₂), 28.4 (CH₃×3), 30.6 (CH₃, C18), 31.4 (CH₂), 34.5 (C, C4), 35.2 (CH₂), 45.2 (C), 48.4 (C), 50.2 (CH, C14), 51.2 (CH, C9), 55.1 (CH₃), 61.1 (CH₂), 61.4 (CH), 64.4 (CH₂, C19), 66.9 (CH₂), 68.8 (CH₂), 80.4 (C, OCMe₃), 88.1 (CH, C20), 96.5 (CH₂), 110.5 (CH, C7), 125.4 (CH), 126.0 (CH), 139.8 (C, C6), 152.6 (C). 14: Colorless glass. HRMS Calcd for C₃₃H₅₁NO₈: 589.3612. Found: 589.3593. MS m/z: 589 (M⁺, 3), 489 (2), 433 (2), 417 (5), 400 (4), 344 (15), 317 (12), 282 (10), 261 (53), 57 (100), 45 (59), 41 (29). IR (CHCl₃) cm⁻¹: 1731, 1682. ¹H NMR δ : 1.11 (3H, s), 1.12-1.21 (1H, m), 1.30-1.63 (3H, m), 1.47 (9H, s), 1.52 (9H, s), 1.74 (1H, ddd, J=13.5, 9, 6 Hz), 1.79–1.89 (1H, m), 1.93–1.97 (1H, m), 1.97–2.06 (1H, m), 2.14 (1H, ddd, J=13.5, 9, 6.5 Hz), 2.21 (1H, br dddd, J=19, 5, 2.5, 2.5 Hz, H11), 2.32 (1H, br d, J=19 Hz, H11), 2.41 (1H, br dd, J=6.5, 6 Hz, H14), 2.44 (1H, d, J=3 Hz, H5), 3.09 (1H, d, J=11 Hz, H19), 3.29 (1H, ddd, J=10.5, 5.5,5.5 Hz), 3.35 (3H, s), 3.47 (1H, ddd, J=10.5, 5, 5 Hz), 3.57 (1H, d, J=11 Hz, H19), 3.60-3.66 (2H, m), 3.76 (1H, d, J=6 Hz, H20), 4.07–4.24 (2H, m, CH₂OBoc), 4.62 (1H, d. J=6.5 Hz), 4.65 (1H, d. J=6.5 Hz), 5.34 (1H, br s. H7), 5.49 (1H, br dd, J=9.5, 6.5 Hz, H13), 5.57 (1H, ddd, J=9.5, 2.5, 2.5 Hz, H12). ¹³C NMR δ: 17.6 (CH₂), 21.9 (CH₂), 26.7 (CH₂), 27.8 (CH₃×3), 28.4 (CH₃×3), 30.6 (CH₃, C18), 31.2 (CH₂), 31.4 (CH₂), 34.4 (C, C4), 45.0 (C), 48.4 (C), 50.2 (CH, C14), 51.1 (CH, C9), 55.1 (CH₃), 61.4 (CH), 64.4 (CH₂, C19), 65.3 (CH₂, CH₂OBoc), 66.9 (CH₂), 68.9 (CH₂), 80.4 (C, OCMe₃), 81.5 (C, OCMe₃), 88.1 (CH, C20), 96.5 (CH₂), 109.8 (CH, C7), 125.2 (CH), 126.1 (CH), 139.9 (C, C6), 152.6 (C, NCOOt-Bu), 153.3 (C, OCOOt-Bu).

4.1.3. Sequential preparation of 13 and 14 from 7 by way of a mixture of 11 and 12. In the same manner as described in Section 4.1.1, a mixture of **11** and **12** was prepared from **7** (52 mg, 0.117 mmol). It was allowed to react with LAH (111 mg, 2.92 mmol) as before and then treated as above. The residue was dissolved in CH_2Cl_2 (4 ml) and Et_3N (0.98 ml, 7.04 mmol) and then the solution was stirred with Boc_2O (0.41 ml, 1.75 mmol) under an Ar atmosphere at 0 °C for 1 h, and at 20 °C for 15 h. The same work-up and separation by PTLC [benzene–EtOAc (6:1)] afforded **13** (38 mg, 55% overall), and **14** (7 mg, 10% overall).

4.1.4. Sequential preparation of 8 and 15 from 7 by way of a mixture of 11 and 12. In the same manner as above (Section 4.1.3), 7 (142 mg, 0.319 mmol) was treated with LDA, TMSCl, and then with LAH to give a residue after having been dried over P_2O_5 in vacuo overnight. To the residue in CH_2Cl_2 (6 ml) and Et_3N (1.33 ml, 9.56 mmol) was added dropwise a solution of ClCbz (0.46 ml, 3.22 mmol) in CH_2Cl_2 (2 ml) during 15 min at -18 °C and the mixture

was stirred under an Ar atmosphere at -18 °C for 10 min, at 0 °C for 0.5 h, and at 22 °C for 17 h. Saturated NaHCO₃-H₂O was added and the whole was extracted with CH₂Cl₂. Usual work-up followed by PTLC [benzene-EtOAc (9:1) for 15 and then benzene-EtOAc (5:2) for 8] afforded 15 (8 mg, 4%) and 8 (105 mg, 63%) in order of increasing polarity. 8: Colorless glass. HRMS Calcd for C₃₁H₄₁NO₆: 523.2932. Found: 523.2941. MS *m/z*: 523 $(M^+, 2), 479 (2), 434 (2), 417 (2), 390 (5), 351 (23), 216$ (5), 91 (100), 45 (32). IR (CHCl₃) cm⁻¹: 1693. ¹H NMR (at 50 °C) δ: 1.11 (3H, s, H18), ca. 1.12–1.23 (1H, m, H1). 1.30–1.48 (3H, m, including OH), 1.50–1.63 (1H, m), 1.65 (1H, ddd, J=14, 7.5, 6.5 Hz, CH_2CH_2OH), 1.76–1.92 (1H, m), 1.93-1.98 (1H, m), ca. 2.00-2.09 (1H, m), 2.05 (1H, ddd, J=14, 7, 7 Hz, CH_2CH_2OH), 2.22 (1H, dddd, J=19, 5, 2.5, 2.5 Hz, H11), 2.31 (1H, br d, J=19 Hz, H11), 2.39 (1H, ddd, J=7, 6, 1.5 Hz, H14), 2.49 (1H, d, J=2.5 Hz, H5), 3.16 (1H, d, J=10.5 Hz, H19), 3.26 (1H, ddd, J=10.5, 5, 5 Hz, CH_2CH_2OMOM), 3.34 (3H, s), 3.46 (1H, ddd, J=10.5, 5, 4.5 Hz, CH₂CH₂OMOM), 3.59-3.64 (2H, m, CH₂OMOM), 3.67 (1H, d, J=10.5 Hz, H19), 3.68-3.78 (2H, m, CH₂OH), 3.75 (1H, d, J=6 Hz, H20), 4.60 (1H, d, $J=6.5 \text{ Hz}, \text{ C}H_2\text{OMe}), 4.62 \text{ (1H, d, } J=6.5 \text{ Hz, C}H_2\text{OMe}),$ 5.16 (1H, d, J=12.5 Hz, COOC H_2 Ph), 5.21 (1H, d, J=12.5 Hz, COOC H_2 Ph), ca. 5.43–5.52 (1H, m, H7), 5.49 (1H, dddd, J=9.5, 7, 1.5, 1.5 Hz, H13), 5.56 (1H, ddd, J=9.5, 3, 2.5 Hz, H12), 7.27–7.42 (5H, m, COOCH₂Ph). ¹³C NMR of this and subsequently synthesized compounds containing the Cbz group could not be determined due to the presence of rotational isomers. 15: Colorless glass. HRMS Calcd for C₃₉H₄₇NO₈: 657.3299. Found: 657.3316. MS m/z: 657 (M⁺, 1), 568 (1), 524 (3), 485 (11), 333 (4), 198 (4), 91 (100), 45 (33). IR (CHCl₃) cm⁻¹: 1734, 1693. ¹H NMR δ: 1.11 (3H, s), 1.11–1.21 (1H, m), 1.30–1.65 (3H, m), 1.66-1.90 (2H, m), 1.92-1.98 (1H, m), 2.01 (1H, ddd, J=13, 11, 1 Hz, H1), 2.11-2.25 (2H, m), 2.30 (1H, br d, J=19 Hz, H11), 2.39 (1H, br dd, J=6, 6 Hz, H14), 2.48 (1H, d, J=3 Hz, H5), 3.17 (1H, d, J=11 Hz, H19), 3.25(1H, ddd, J=10.5, 5, 5 Hz), 3.34 (3H, s), 3.45 (1H, ddd,J=10.5, 5, 4.5 Hz), 3.59–3.64 (2H, m), 3.66 (1H, d, J=11 Hz, H19, 3.76 (1H, d, J=6 Hz, H20, 4.18-4.29(2H, m, CH₂OCbz), 4.61 (1H, d, J=6.5 Hz), 4.63 (1H, d, J=6.5 Hz), 5.15 (2H, s, OCOOC H_2 Ph), 5.16 (1H, d, J=12 Hz), 5.21 (1H, d, J=12 Hz), ca. 5.36–5.50 (1H, m), 5.46 (1H, br dd, J=9.5, 6.5 Hz, H13), 5.55 (1H, ddd, J=9.5, 3, 2.5 Hz, H12), 7.30-7.42 (10H, m).

4.1.5. Reduction of 13, 14, 8, and 15 with NaBH₃CN. The procedure for the preparation of 16 from 13 is described as a representative example. NaBH₃CN (34 mg, 0.540 mmol) and HCl-H₂O (2.5%, 0.51 ml, 0.349 mmol) were added in this order to a cooled (0 °C) solution of 13 (22 mg, 45.0 µmol) in MeOH (5 ml) and the mixture was stirred at that temperature for 30 min and at 21 °C for 1 h. Saturated NaHCO₃-H₂O was added and the whole was extracted with CH₂Cl₂. Usual work-up followed by purification by PTLC [benzene-EtOAc (3:2)] provided **16** (20 mg, 91%) as a colorless glass. HRMS Calcd for C₂₈H₄₅NO₆: 491.3244. Found: 491.3246. MS *m/z*: 491 (M⁺, 2), 402 (3), 390 (12), 346 (18), 302 (25), 284 (36), 57 (100), 45 (69), 41 (26). IR (CHCl₃) cm⁻¹: 1673. ¹H NMR (at 50 °C) δ : 0.94 (3H, s, H18), 0.99 (1H, ddd, J=10, 7.5, 5.5 Hz, H1), 1.18–1.23 (1H, m, H9), 1.23-1.32 (1H, m, H3), 1.38-1.47 (1H, m,

H2), 1.47 (9H, s), 1.51 (1H, br s, OH), 1.59–1.70 (2H, m), 1.62 (1H, d, J=7 Hz, H5), 1.79-2.30 (7H, m), 2.39 (1H, dd, J=6, 5.5 Hz, H14), 3.18–3.32 (2H, m, H19×2), 3.35 (3H, s), 3.48 (1H, ddd, J=10.5, 6, 5 Hz, CH₂CH₂OMOM), 3.52 (1H, ddd, J=10.5, 5, 4.5 Hz, CH_2CH_2OMOM), 3.61– 3.68 (2H, m, CH₂OMOM), ca. 3.62–3.81 (2H, m, CH_2OH), 4.02 (1H, d, J=6 Hz, H20), 4.06–4.16 (1H, m, H6), 4.62 (1H, d, J=6.5 Hz, OC H_2 OMe), 4.64 (1H, d, J=6.5 Hz, OC H_2 OMe), 5.46–5.61 (2H, m, H12 and H13). ¹³C NMR of this and subsequently synthesized compounds containing the Boc group could not be determined due to the presence of rotational isomers. In the same manner, 17 (13 mg, 93%) was obtained from **14** (14 mg, 23.8 umol) after PTLC [hexane-EtOAc (3:1)] as a colorless glass. HRMS Calcd for C₃₃H₅₃NO₈: 591.3768. Found: 591.3761. MS m/z: 591 (M⁺, 1), 502 (1), 491 (3), 434 (9), 402 (10), 390 (5), 346 (45), 284 (10), 89 (8), 57 (100), 45 (40), 41 (26). IR (CHCl₃) cm⁻¹: 1732, 1674. ¹H NMR (at 50 °C) δ : 0.93 (3H, s, H18), 0.98 (1H, ddd, J=12.5, 10, 5.5 Hz, H1), 1.23 (1H, d, J=4.5 Hz, H9), 1.27 (1H, ddd, J=13.5, 11, 5 Hz, H3), ca. 1.39-1.50 (1H, m), 1.47 (18H, s), ca. 1.60-1.70 (1H, m, H3), 1.62 (1H, d, J=7.5 Hz, H5), 1.74 (1H, ddd, J=13.5, 9, 6 Hz, CH₂CH₂OBoc), 1.79–1.92 (1H, m, H2), 1.92–2.24 (4H, m), 2.24 (1H, dd, J=16.5, 9 Hz, H7), 2.25 (1H, br d, J=16.5, 9 Hz, H7)J=20 Hz, H11), 2.39 (1H, br dd, J=6, 6 Hz, H14), ca. 3.11-3.28 (1H, m, H19), 3.28 (1H, br d, J=9.5 Hz, H19), 3.35 (3H, s), 3.38 (1H, dt, J=10, 5 Hz, CH_2CH_2OMOM), 3.52 (1H, dt, J=10, 5 Hz, CH₂CH₂OMOM), 3.64 (2H, dd, J=5, 5 Hz, CH_2OMOM), 4.03 (1H, d, J=6 Hz, H20), 4.01-4.23 (3H, m), 4.62 (1H, d, J=6.5 Hz, CH_2OMe), 4.64 (1H, d, J=6.5 Hz, CH_2OMe), 5.50 (1H, br dd, J=9.5, 3 Hz, H12), 5.55 (1H, br dd, J=9.5, 6 Hz, H13). In the same manner, 18 (77 mg, 90%) was obtained from 8 (85 mg, 0.163 mmol) after PTLC [hexane-EtOAc (3:2)] as a colorless glass. HRMS Calcd for C₃₁H₄₃NO₆: 525.3088. Found: 525.3062. MS m/z: 525 (M⁺, 1), 480 (1), 436 (8), 420 (2), 392 (13), 390 (12), 300 (4), 284 (4), 91 (100), 45 (39). IR (CHCl₃) cm⁻¹: 1683. ¹H NMR (at 50 °C) δ : 0.94 (3H, s), 0.98 (1H, ddd, J=12.5, 10, 6 Hz, H1), 1.17–1.24 (1H, m), 1.28 (1H, ddd, *J*=13.5, 11, 5 Hz, H3), 1.38–1.50 (2H, m, including OH), 1.55-1.71 (2H, m), 1.64 (1H, d, J=7 Hz, H5), 1.80–2.07 (4H, m), 2.10–2.33 (4H, m), 2.32-2.44 (1H, m, H14), ca. 3.21-3.40 (2H, m), 3.33 (3H, s), 3.38 (1H, d, J=11 Hz, H19), 3.50 (1H, ddd, J=10.5, 5, 4.5 Hz, CH₂CH₂OMOM), ca. 3.55–3.80 (2H, m), 3.60– 3.65 (2H, m), 4.00 (1H, d, J=6 Hz, H20), 4.19 (1H, dd, J=9, 7 Hz, H6), 4.59 (1H, d, J=6.5 Hz, CH_2OMe), 4.62 (1H, d, J=6.5 Hz, CH_2OMe), 5.09 (1H, d, J=12.5 Hz, OCH_2Ph), 5.19 (1H, d, J=12.5 Hz, OCH_2Ph), 5.48–5.60 (2H, m, H12 and H13), 7.26-7.38 (5H, m). In the same manner, 19 (5.5 mg, 91%) was obtained from 15 (6 mg, 9.13 µmol) after PTLC [hexane–EtOAc (4:1)] as a colorless glass. HRMS Calcd for $C_{39}H_{49}NO_8$: 659.3455. Found: 659.3434. MS m/z: 659 (M⁺, 0.8), 614 (0.5), 570 (4), 526 (12), 524 (8), 436 (3), 91 (100), 45 (27). IR (CHCl₃) cm⁻¹: 1735, 1684. ¹H NMR (at 50 °C) δ : 0.94 (3H, s), 0.97 (1H, ddd, J=12.5, 9.5, 5.5 Hz, H1), 1.18–1.25 (1H, m), 1.27 (1H, ddd, J=13.5, 11, 5 Hz, H3), 1.39-1.51 (1H, m), ca. 1.60-1.71 (1H, m), 1.79-1.92 (1H, m), 1.63 (1H, d, J=7.5 Hz, H5), 1.98 (1H, ddd, J=12.5, 4.5, 4.5 Hz,H1), 2.10 (1H, ddd, J=13.5, 9, 6.5 Hz), 2.13–2.32 (5H, m), 2.32-2.43 (1H, m), 3.22-3.41 (3H, m), 3.32 (3H, s), 3.48 (1H, ddd, J=10.5, 4.5, 4.5 Hz), 3.59-3.65 (2H, m), 4.00

(1H, d, J=6 Hz, H20), 4.04–4.34 (3H, m, H6 and CH₂OCbz), 4.59 (1H, d, J=6.5 Hz), 4.61 (1H, d, J=6.5 Hz), 5.09 (1H, d, J=12.5 Hz), 5.14 (2H, s, OCOOCH₂Ph), 5.19 (1H, br d, J=12.5 Hz), 5.45–5.55 (2H, m), 7.27–7.40 (10H, m).

4.1.6. Alcoholysis of 17 and 19 to form 16 and 18, respectively. The procedure for the preparation of 16 from 17 was typical. A solution of 17 (6 mg, $10.2 \mu mol$) in K_2CO_3 in MeOH (1% w/v, 2 ml) was stirred under reflux for 2.5 h. After the mixture had been cooled, saturated NH₄Cl-H₂O was added and the whole was extracted with CH₂Cl₂. Usual work-up and PTLC [benzene–EtOAc (3:2)] gave 16 (5 mg, quant.) as a colorless glass. In the same manner, 18 (4 mg, quant.) was obtained from 19 (5 mg, 7.59 μmol).

4.2. Attempts at C-ring formation (Scheme 5)

4.2.1. Benzoylation of 16 and 18 to form 20 and 21, respectively. The procedure for the preparation of 20 from 16 is described as a representative example. Benzoyl chloride (98 µl, 0.819 mmol) was added to a cooled (0 °C) solution of **16** (20 mg, 40.7 μmol) in CH₂Cl₂ (1.5 ml) and Et₃N (0.56 ml, 4.03 mmol). Stirring was continued at 0 °C for 15 min and at 20 °C for 16 h, then the mixture was cooled again in an ice bath. MeOH (66 ul. 1.63 mmol) was added to it and the whole was stirred at that temperature for 1 h. Addition of saturated NaHCO₃–H₂O followed by extraction with CH₂Cl₂, usual work-up, and separation by PTLC [hexane-EtOAc (4:1)] afforded 20 (24 mg, 99%) as a colorless glass. HRMS Calcd for C₃₅H₄₉NO₇: 595.3506. Found: 595.3512. MS *m/z*: 595 (M⁺, 1), 495 (7), 494 (9), 406 (45), 390 (10), 389 (10), 346 (7), 284 (17), 105 (33), 69 (31), 57 (100), 45 (62), 41 (39). IR (CHCl₃) cm⁻¹: 1706, 1674. ¹H NMR (at 50 °C) δ : 0.95 (3H, s), 0.95–1.05 (1H, m), 1.22-1.34 (2H, m), 1.41-1.54 (1H, m), 1.47 (9H, s), 1.61-1.70 (1H, m), 1.64 (1H, d, J=7 Hz, H5), 1.80-1.96 (2H, m), 2.00 (1H, ddd, J=13, 5, 5 Hz, H1), 2.12–2.34 (4H, m), 2.35 (1H, dd, J=16, 9 Hz, H7), 2.46 (1H, br dd, J=16, 9 Hz, H7)J=6, 5 Hz, H14), 3.13–3.33 (2H, m), 3.35 (3H, s), 3.35– 3.43 (1H, m), 3.47–3.56 (1H, m), 3.61–3.68 (2H, m), 4.06 (1H, d, J=6 Hz, H20), 4.09-4.21 (1H, m), 4.35 (1H, ddd, $J=10.5, 8.5, 7 \text{ Hz}, CH_2OBz), 4.44 (1H, ddd, <math>J=10.5, 8.5,$ 6 Hz, CH₂OBz), 4.62 (1H, d, J=6.5 Hz), 4.64 (1H, d, J=6.5 Hz), 5.48–5.62 (2H, m), 7.39–7.46 (2H, m), 7.50– 7.57 (1H, m), 8.00–8.06 (2H, m). In the same manner, **21** (73 mg, 97%) was obtained from **18** (63 mg, 0.120 mmol) as a colorless glass after PTLC [hexane-EtOAc (3:1)]. HRMS Calcd for C₃₈H₄₇NO₇: 629.3350. Found: 629.3338. MS (*m*/*z*): 629 (M⁺, 3), 540 (10), 496 (20), 494 (15), 480 (5), 404 (5), 336 (6), 105 (21), 91 (100), 59 (11), 45 (38). IR (CHCl₃) cm⁻¹: 1684. ¹H NMR (at 50 °C) δ : 0.95 (3H, s), 1.00 (1H, ddd, J=13, 10, 5.5 Hz, H1), 1.22–1.35 (2H, m), 1.39-1.52 (1H, m), 1.61-1.72 (1H, m), 1.67 (1H, d, J=7 Hz, H5), 1.77–1.96 (2H, m), 2.01 (1H, ddd, J=13, 4.5, 4.5 Hz, H1), 2.13-2.42 (5H, m), 2.39-2.51 (1H, m), ca. 3.25-3.42 (3H, m), 3.32 (3H, s), 3.50 (1H, dt, J=10, 5 Hz), 3.63 (2H, dd, *J*=5, 5 Hz), 4.04 (1H, d, *J*=5.5 Hz, H20), 4.23 (1H, br dd, J=8, 7 Hz, H6), 4.26–4.48 (2H, m, CH_2OBz), 4.60 (2H, s), 5.10 (1H, d, J=12.5 Hz), 5.18 (1H, d, J=12.5 Hz), 5.50–5.60 (2H, m), 7.26–7.38 (5H, m), 7.38-7.46 (2H, m), 7.50-7.57 (1H, m), 8.00-8.07 (2H, m).

4.2.2. Allylic oxidation of 20 and 21 for respective formation of 22, 23 and 24, 25. The procedure for the preparation of 22, 23 from 20 (Table 1, run b) is described as a representative example. 3,5-Dimethylpyrazole (13 mg, 0.135 mmol) was added to a cooled (-18 °C) slurry of CrO₃ (12 mg, 0.120 mmol) in CH₂Cl₂ (1.5 ml) under an Ar atmosphere and the mixture was stirred at that temperature for 15 min. A CH₂Cl₂ (2 ml) solution of 20 (12 mg, 20.2 μmol) was added to it, and the resulting mixture was stirred at -18 to 23 °C for 48 h. Successive addition of saturated NaHCO₃– H₂O and saturated Na₂S₂O₃-H₂O followed by extraction with CH₂Cl₂, usual work-up, and separation by PTLC [hexane-EtOAc (3:1)] afforded 22 (5.5 mg, 45%) and 23 (3.5 mg, 28%) in order of decreasing polarity. 22: Colorless glass. HRMS Calcd for C₃₅H₄₇NO₈: 609.3299. Found: 609.3291. MS (m/z): 609 (M⁺, 1), 509 (18), 420 (29), 360 (14), 105 (53), 89 (11), 77 (18), 57 (100), 45 (85), 41 (25). IR (CHCl₃) cm⁻¹: 1709, 1665. ¹H NMR (at 50 °C) δ : 0.98 (3H, s), 1.17 (1H, ddd, J=13, 10, 5 Hz), 1.25-1.81 (5H, m), 1.47 (9H, s), 1.82 (1H, d, J=7 Hz), 1.83 (1H, ddd, J=14, 7, 7 Hz), 2.07 (1H, ddd, J=14, 7, 7 Hz), 2.13 (1H, s, H9), 2.20-2.38 (2H, m), 3.08 (1H, ddd, J=7, 6, 1.5 Hz, H14), 3.21–3.37 (2H, m), 3.33 (3H, s), 3.47–3.58 (2H, m), 3.59–3.65 (2H, m), 4.10–4.19 (1H, m), 4.27-4.34 (2H, m), 4.41 (1H, d, J=6 Hz), 4.58 (1H, d, J=6.5 Hz), 4.60 (1H, d, J=6.5 Hz), 6.19 (1H, dd, J=9.5, 1.5 Hz, H12), 6.99 (1H, dd, J=9.5, 7 Hz, H13), 7.40–7.47 (2H, m), 7.51–7.58 (1H, m), 7.99–8.03 (2H, m). 23: Colorless glass. HRMS Calcd for C₃₅H₄₇NO₈: 609.3299. Found: 609.3292. MS (*m/z*): 609 (M⁺, 0.6), 509 (20), 464 (9), 420 (47), 404 (5), 298 (6), 105 (51), 89 (7), 77 (16), 57 (100), 45 (72), 41 (23). IR (CHCl₃) cm⁻¹: 1708, 1676. ¹H NMR (at 50 °C) δ : 1.00 (3H, s), 1.09 (1H, ddd, J=12.5, 11.5, 4 Hz, H1), 1.35 (1H, ddd, J=13.5, 3, 4 Hz), 1.47 (9H, s), 1.62–1.79 (3H, m), 1.75 (1H, d, J=6.5 Hz, H5), 1.82 (1H, dt, *J*=14, 7 Hz), 1.91 (1H, dt, *J*=14, 7 Hz), 2.01 (1H, ddd, J=12.5, 4, 4 Hz, H1), 2.06 (1H, dd, J=7, 1.5 Hz, H9), 2.20 (1H, dd, J=16.5, 8.5 Hz, H7), 2.39 (1H, br d, J=16.5 Hz, H7), 3.11 (1H, ddd, J=7, 1.5, 1.5 Hz, H14), 3.21 (1H, br d, J=11 Hz, H19), 3.32 (3H, s), 3.32– 3.42 (1H, m), 3.38 (1H, d, *J*=11 Hz, H19), 3.50–3.55 (2H, m), 3.60-3.67 (1H, m), 4.07-4.16 (1H, m), 4.28 (2H, dd, J=7, 7 Hz), 4.40 (1H, d, J=7 Hz, H20), 4.55 (1H, d, J=6.5 Hz), 4.57 (1H, d, J=6.5 Hz), 6.15 (1H, dd, J=9.5, 1.5 Hz, H12), 6.93 (1H, dd, J=9.5, 7 Hz, H11), 7.39–7.46 (2H, m), 7.51–7.58 (1H, m), 7.99–8.04 (2H, m). In the same manner, 24 (1 mg, 12%) and 25 (0.5 mg, 6%) were obtained along with a recovery of unchanged starting material (4 mg, 50%) from **21** (8 mg, 12.7 μmol), in order of decreasing polarity (Table 1, run e) after separation by PTLC [hexane-EtOAc (3:1)]. 24: Colorless glass. HRMS Calcd for $C_{38}H_{45}NO_8$: 643.3143. Found: 643.3142. MS (m/z): 643 $(M^+, 8), 554 (2), 510 (15), 507 (7), 418 (3), 105 (20), 91$ (100), 89 (7), 77 (6), 45 (36). IR (CHCl₃) cm⁻¹: 1706, 1687, 1666. ¹H NMR (at 50 °C) δ : 0.99 (3H, s), 1.11–1.84 (7H, m), 1.84 (1H, d, J=7 Hz, H5), 2.06 (1H, ddd, J=14, 7, 7 Hz), 2.13 (1H, s, H9), 2.24-2.38 (2H, m), 3.01-3.10 (1H, m, H14), 3.30 (3H, s), 3.30–3.69 (6H, m), 4.18–4.33 (3H, m), 4.38 (1H, d, J=6 Hz, H20), 4.56 (2H, s), 5.11 (1H, d, J=12.5 Hz), 5.19 (1H, d, J=12.5 Hz), 6.11 (1H, dd, J=9.5, 1 Hz, H12), 6.98 (1H, dd, J=9.5, 7 Hz, H13), 7.26–7.39 (5H, m), 7.40–7.47 (2H, m), 7.51–7.58 (1H, m), 7.98-8.04 (2H, m). 25: Colorless glass. HRMS Calcd for C₃₈H₄₅NO₈: 643.3143. Found: 643.3144. MS (m/z): 643 $(M^+, 3), 554 (3), 510 (18), 508 (9), 476 (6), 420 (4), 105$ (27), 91 (100), 59 (7), 45 (46). IR (CHCl₃) cm⁻¹: 1702 (sh), 1680. ¹H NMR (at 50 °C) δ: 1.01 (3H, s), 1.01 (1H, ddd, J=12, 12, 4 Hz), 1.20–1.75 (4H, m), 1.78 (1H, d, J=6.5 Hz, H5), 1.81 (1H, dt, J=15, 6.5 Hz), 1.89 (1H, dt, J=15, 6.5 Hz), 2.01 (1H, br ddd, J=12, 3.5, 3.5 Hz), 2.06 (1H, br d, J=7 Hz, H9), 2.22 (1H, dd, J=16.5, 8.5 Hz), ca. 2.28-2.50 (1H, br m), 3.09 (1H, br d, J=7 Hz, H14), 3.25-3.38 (2H, m), 3.29 (3H, s), 3.44–3.53 (3H, m), 3.61 (1H, ddd, J=10, 4, 4 Hz), 4.19 (1H, br dd, J=8.5, 6.5 Hz), 4.26 (2H, dd, J=6.5, 6.5 Hz), 4.37 (1H, d, J=7 Hz), 4.54 (2H, d, J=6.5, 6.5 Hz), 4.37 (1H, d, J=7 Hz), 4.54 (2H, d, J=6.5, 6.5 Hz), 4.37 (1H, d, J=7 Hz), 4.54 (2H, d, J=6.5, 6.5 Hz), 4.37 (1H, d, J=7 Hz), 4.54 (2H, d, J=6.5, 6.5 Hz), 4.54 (2H, d, J=6.s), 5.12 (1H, d, J=12.5 Hz), 5.18 (1H, d, J=12.5 Hz), 6.15 (1H, dd, J=9.5, 1.5 Hz, H12), 6.93 (1H, dd, J=9.5, 7 Hz, H11), 7.26–7.38 (5H, m), 7.39–7.47 (2H, m), 7.50–7.58 (1H, m), 7.99-8.05 (2H, m).

4.2.3. Allylic oxidation of 21 with CrO_3 and t-BuOOH (Table 1, run f). t-BuOOH (70%, 20 µl, 0.146 mmol) was added to a slurry of CrO_3 (2.5 mg, 25 µmol) in CH_2Cl_2 (1.5 ml) and the mixture was stirred at 25 °C for 10 min under an Ar atmosphere. The mixture was allowed to cool in an ice bath, and to this was added a CH_2Cl_2 (1.5 ml) solution of 21 (9 mg, 14.3 µmol). Stirring was continued at 0–25 °C for 42 h and the reaction was quenched by addition of saturated $NaHCO_3-H_2O$ and saturated $Na_2S_2O_3-H_2O$. Extraction with CH_2Cl_2 , usual work-up, and PTLC [hexane–EtOAc (3:1)] gave 24 (2 mg, 22%), 25 (1.5 mg, 16%), and recovered 21 (4 mg, 44%) in order of decreasing polarity.

4.2.4. Hydrogenation of 22 and 23 to form 26 and 27, respectively. The procedure for the preparation of 26 from 22 was typical. A slurry of 22 (6 mg, 9.85 µmol) and 10% Pd/C (1.5 mg, 1.4 µg atom) in MeOH (3 ml) was stirred under a hydrogen atmosphere (1 atm) at 21 °C for 2 h. The mixture was filtered through a Celite pad and the pad was rinsed with CH₂Cl₂. Evaporation of the combined organic layers followed by separation by PTLC [hexane-EtOAc (7:4)] provided 26 (6 mg, quantitative) as a colorless glass. HRMS Calcd for C₃₅H₄₉NO₈: 611.3455. Found: 611.3448. MS (m/z): 611 $(M^+, 1)$, 510 (10), 422 (57), 377 (16), 349 (4), 328 (6), 300 (14), 105 (49), 89 (7), 77 (12), 57 (100), 45 (63), 41 (19). IR (CHCl₃) cm⁻¹: 1706, 1681. ¹H NMR (at 50 °C) δ: 0.95–1.07 (1H, m), 0.98 (3H, s), 1.31–1.42 (1H, m), 1.43-1.54 (1H, m), 1.47 (9H, s), 1.62-2.02 (7H, m), 1.64 (1H, d, J=7 Hz, H5), 1.84 (1H, s, H9), 2.10 (1H, dd, J=16, 8.5 Hz), 2.28 (1H, dd, J=18, 7 Hz, H12), 2.40–2.52 (2H, m), 2.50 (1H, ddd, J=18, 10, 10 Hz, H12), 3.28 (1H, ddd, J=18, 10, 10 Hz, H12)br d, J=11 Hz, H19), 3.35 (3H, s), 3.37 (1H, d, J=11 Hz, H19), 3.52–3.62 (1H, m), 3.65–3.74 (3H, m), 4.10 (1H, dd, J=8.5, 7 Hz, H6), 4.25 (1H, d, J=6.5 Hz), 4.35 (1H, ddd, J=11, 9, 6 Hz), 4.46 (1H, ddd, J=11, 9, 6.5 Hz), 4.62 (2H, s), 7.39–7.46 (2H, m), 7.51–7.57 (1H, m), 7.99–8.04 (2H, m). In the same manner as above, 27 (4 mg, quantitative) was obtained from 23 (4 mg, 6.57 mmol) as a colorless glass after PTLC [hexane-EtOAc (2:1)]. HRMS Calcd for C₃₅H₄₉NO₈: 611.3455. Found: 611.3478. MS (*m/z*): 611 $(M^+, 1), 510 (10), 466 (9), 450 (7), 422 (51), 328 (7), 300$ (7), 105 (38), 57 (100), 45 (61), 41 (23). IR (CHCl₃) cm⁻¹: 1704, 1679. ¹H NMR (at 50 °C) δ : 0.99 (3H, s), 1.11 (1H, ddd, *J*=13, 11, 4.5 Hz), 1.35 (1H, ddd, *J*=13.5, 12, 5.5 Hz), 1.44–1.58 (2H, m), 1.46 (9H, s), 1.65–2.17 (7H, m), 1.68 (1H, d, J=6.5 Hz, H5), 2.17 (1H, dd, H)

J=16.5, 8.5 Hz), 2.25 (1H, dd, *J*=17.5, 8.5 Hz, H12), 2.33 (1H, br d, *J*=16.5 Hz), 2.58 (1H, ddd, *J*=17.5, 10.5, 10.5 Hz, H12), 2.90 (1H, d, *J*=7 Hz, H14), 3.22 (1H, br d, *J*=10.5 Hz, H19), 3.33 (3H, s), 3.36 (1H, d, *J*=10.5 Hz, H19), 3.38–3.46 (1H, m), 3.51–3.59 (3H, m), 4.12 (1H, dd, *J*=8.5, 6.5 Hz, H6), 4.28 (1H, d, *J*=7 Hz), 4.33 (1H, ddd, *J*=11, 8, 6.5 Hz), 4.43 (1H, ddd, *J*=11, 8, 6 Hz), 4.58 (2H, s), 7.39–7.46 (2H, m), 7.50–7.57 (1H, m), 8.01–8.07 (2H, m).

4.2.5. Alcoholysis of 26 and 27 to form 28 and 29, respectively. In a similar manner to that described for the preparation of 16 from 17 (Section 4.1.6), 26 (6 mg, 9.82 µmol) and 27 (5 mg, 8.18 μmol) were separately heated in K₂CO₃-MeOH (0.5% w/v, 2.5 ml each) for 2 h to afford, respectively, **28** (5 mg, quantitative) and **29** (4 mg, quantitative) after purification by PTLC [hexane-EtOAc (3:2)]. 28: Colorless glass. HRMS Calcd for C₂₈H₄₅NO₇: 507.3193. Found: 507.3188. MS (m/z): 507 (M⁺, 2), 418 (2), 406 (10), 362 (33), 345 (7), 318 (23), 300 (12), 273 (20), 270 (9), 59 (11), 57 (100), 45 (72), 41 (22). IR (CHCl₃) cm⁻¹: 1679. ¹H NMR (at 50 °C) δ : 0.97 (3H, s), 0.99 (1H, ddd, J=12.5, 9.5, 5 Hz, H1), 1.35 (1H, ddd, <math>J=13, 10.5, 4.5 Hz,H3), 1.39–1.89 (8H, m, including OH), 1.49 (9H, s), 1.62 (1H, d, J=7.5 Hz, H5), 1.81 (1H, s, H9), 1.87–1.97 (1H, m), 2.05 (1H, dd, J=16, 9 Hz, H7), 2.25 (1H, dd, J=18, 7.5 Hz, H12), 2.26–2.43 (2H, m), 2.48 (1H, ddd, J=18, 10, 10 Hz, H12), 3.27 (1H, br d, J=11 Hz, H19), 3.35 (3H, s), 3.36 (1H, d, J=11 Hz, H19), 3.51-3.60 (1H, m), 3.65-3.79(5H, m), 4.07 (1H, dd, J=9, 7.5 Hz, H6), 4.21 (1H, d, H)J=6.5 Hz, H20), 4.63 (2H, s). **29**: Colorless glass. HRMS Calcd for C₂₈H₄₅NO₇: 507.3193. Found: 507.3170. MS (m/z): 507 (M⁺, 2), 434 (2), 406 (9), 362 (21), 318 (35), 300 (17), 270 (13), 57 (100), 45 (79), 41 (27). IR (CHCl₃) cm⁻¹: 1679. ¹H NMR (at 50 °C) δ : 0.98 (3H, s), 1.10 (1H, ddd, J=12.5, 11.5, 4.5 Hz, H1), 1.35 (1H, ddd, J=13.5, 12, 5 Hz, H3), 1.44-2.16 (10H, m, including OH), 1.47 (9H, s), 1.67 (1H, d, J=6.5 Hz, H5), 2.03 (1H, dd, J=16, 8.5 Hz, H7), 2.21 (1H, dd, J=17.5, 8.5 Hz, H12), 2.33 (1H, br d, J=16 Hz, H7), 2.57 (1H, ddd, J=17.5, 10.5, 10.5 Hz, H12), 2.90 (1H, d, J=7 Hz, H14), 3.21 (1H, br d, J=10.5 Hz, H19), 3.33 (3H, s), 3.39 (1H, d, J=10.5 Hz, H19), 3.35-3.45 (1H, m), 3.50-3.58 (3H, m), 3.68-3.76 (2H, m, CH₂OH), 4.09 (1H, dd, J=8.5, 6.5 Hz, H6), 4.25 (1H, d, J=7 Hz, H20), 4.58 (2H, s).

4.2.6. Oxidation of 28 and 29 to form 30 and 31, respectively. The procedure for the preparation of 30 from 28 was typical. PCC-Al₂O₃ (20 wt %, 32 mg, 29.7 μmol) was added in one-portion to a cooled (0 °C) solution of 28 (5 mg, 9.86 mmol) in CH₂Cl₂ (3 ml) and the mixture was stirred at 0 °C for 10 min and at 24 °C for 1 h. Saturated NaHCO₃-H₂O was added and the whole was extracted with CH₂Cl₂. Usual work-up and PTLC [hexane-EtOAc (1:1)] provided **30** (4.5 mg, 90%) as a colorless glass. HRMS Calcd for C₂₈H₄₃NO₇: 505.3037. Found: 505.3042. MS (m/z): 505 (M⁺, 2), 416 (2), 404 (12), 360 (31), 316 (25), 299 (16), 298 (14), 271 (17), 57 (100), 45 (75), 41 (31). IR (CHCl₃) cm⁻¹: 1715, 1680. ¹H NMR (at 50 °C) δ : 0.99 (3H, s), 1.02 (1H, ddd, J=13, 9.5, 5 Hz), 1.37 (1H, ddd, J=13.5, 10.5, 5 Hz), 1.44-1.54 (1H, m), 1.47 (9H, s), 1.59 (1H, d, J=7 Hz), 1.59-2.04 (5H, m), 1.93 (1H, s, H9), 2.03 (1H, dd, J=16, 9 Hz, H7), 2.25 (1H, dd, J=18,

7.5 Hz), 2.42 (2H, d, J=2 Hz, CH₂CHO), 2.53 (1H, ddd, J=18, 10, 10 Hz), ca. 2.61–2.69 (1H, m), 2.65 (1H, d, J=16 Hz, H7), 3.28 (1H, br d, J=11 Hz), 3.35 (3H, s), 3.38 (1H, d, J=11 Hz), 3.54–3.63 (1H, m), 3.66–3.74 (3H, m), 4.07 (1H, dd, J=9, 7 Hz, H6), 4.27 (1H, d, J=6.5 Hz), 4.62 (2H, s), 9.78 (1H, t, J=2 Hz, CHO). In the same manner as above, **31** (3 mg, 75%) was obtained from **29** (4 mg, 7.89 µmol) as a colorless glass after separation by PTLC [hexane–EtOAc (2:1)]. HRMS Calcd for C₂₈H₄₃NO₇: 505.3037. Found: 505.3034. MS (m/z): 505 (M⁺, 1), 432 (2), 404 (11), 360 (28), 316 (25), 298 (13), 288 (7), 57 (100), 45 (81), 41 (28). IR (CHCl₃) cm⁻¹: 1714, 1680. ¹H NMR (at 50 °C) δ : 0.99 (3H, s), 1.13 (1H, ddd, J=13, 11, 4.5 Hz), 1.36 (1H, ddd, *J*=13.5, 12, 5 Hz), 1.46 (9H, s), ca. 1.46-1.57 (1H, m), 1.64-2.28 (7H, m), 1.72 (1H, d, J=7 Hz), 2.17 (1H, dd, J=16, 8 Hz), 2.28 (1H, dd, J=17, 2 Hz, CH_2CHO), 2.34 (1H, br d, J=16 Hz), 2.44 (1H, dd, J=17, 1.5 Hz, CH_2CHO), 2.61 (1H, ddd, J=17.5, 10.5, 10.5 Hz), 2.93 (1H, d, J=6.5 Hz), 3.22 (1H, br d, J=11 Hz), 3.33 (3H, s), 3.36 (1H, d, J=11 Hz), 3.39–3.47 (1H, m), 3.51–3.58 (3H, m), 4.29 (1H, d, *J*=6.5 Hz), 4.58 (2H, s), 9.76 (1H, dd, J=2, 1.5 Hz, CHO).

4.2.7. Preparation of 32, 33, and 34 from 30. K_2CO_3 $(7.5 \text{ mg}, 54.3 \text{ }\mu\text{mol})$ was added to a solution of 30 (4.5 mg, 8.91 µmol) and dimethyl (1-diazo-2-oxopropyl)phosphonate (15 mg, 78.1 µmol) in MeOH (1.5 ml) and the mixture was stirred at 24 °C under an Ar atmosphere for 3 h. Saturated NH₄Cl-H₂O was added and the whole was extracted with CH₂Cl₂. Usual work-up and separation by PTLC [hexane–EtOAc (5:1)] furnished **32** (1.5 mg, 34%) and a mixture of 33 and 34 (4 mg) in order of increasing polarity. The latter was purified by PTLC [hexane-EtOAc (1:1)] to give 33 (1.5 mg, 33%) and **34** (1 mg, 22%) in order of decreasing polarity. 32: Colorless glass. HRMS Calcd for C₂₉H₄₃NO₆: 501.3088. Found: 501.3106. MS (*m/z*): 501 (M⁺, 2), 400 (10), 356 (30), 312 (15), 295 (9), 294 (14), 267 (15), 57 (100), 45 (64), 41 (27). IR (CHCl₃) cm⁻¹: 2120, 1680. ¹H NMR (at 50 °C) δ : 0.95–1.06 (1H, m), 0.99 (3H, s), 1.30– 1.50 (2H, m), 1.49 (9H, s), 1.61 (1H, d, *J*=7 Hz, H5), 1.61–1.88 (4H, m), 1.82 (1H, br s), 1.96 (1H, ddd, *J*=13.5, 10, 3 Hz, H13), 1.98 (1H, dd, J=2.5, 2.5 Hz, C=CH), 2.08 (1H, br dd, J=16.5, 8 Hz, H7), 2.12 (1H, dd, J=16.5, 2.5 Hz, $CH_2C \equiv CH$), 2.19 (1H, dd, J=16.5, 2.5 Hz, $CH_2C \equiv CH$), 2.25 (1H, dd, J=18, 7.5 Hz, H12), 2.45–2.52 (1H, m), 2.51 (1H, ddd, J=18, 10, 10 Hz, H12), 2.67 (1H, m)d, J=16.5 Hz, H7), 3.28 (1H, br d, J=11 Hz, H19), 3.35 (3H, s), 3.38 (1H, d, J=11 Hz, H19), 3.54–3.62 (1H, m), 3.66–3.74 (3H, m), 4.08 (1H, dd, J=8, 7 Hz, H6), 4.25 (1H, d, J=7 Hz, H20), 4.62 (2H, s). **33**: Colorless glass. HRMS Calcd for C₂₈H₄₃NO₇: 505.3037. Found: 505.3028. MS (*m*/*z*): 505 (M⁺, 1), 404 (11), 360 (28), 316 (16), 299 (32), 298 (23), 271 (14), 254 (8), 59 (10), 57 (100), 45 (67), 41 (23). IR (CHCl₃) cm⁻¹: 1706, 1678. ¹H NMR (at 50 °C) δ: 0.99 (3H, s), 1.19–1.72 (8H, m, including OH), 1.38 (1H, d, J=14.5 Hz, H15), 1.47 (9H, s), 1.60 (1H, d, J=5.5 Hz, H5), 1.83 (1H, dd, J=16, 8 Hz, H7), 1.85-1.94(1H, m), 1.97 (1H, dd, J=13.5, 5 Hz, H13), 2.16 (1H, dd, J=14.5, 8 Hz, H15), 2.17–2.24 (1H, m, H14), 2.32 (1H, dd, J=5, 5 Hz, H12), 2.60 (1H, br d, J=16 Hz, H7), 3.17 (1H, br d, J=11.5 Hz), 3.31–3.39 (1H, m), 3.33 (3H, s), 3.40 (1H, d, J=11.5 Hz), 3.44–3.52 (1H, m), 3.60–3.65 (2H, m), 4.03 (1H, dd, J=8, 5.5 Hz, H6), 4.04 (1H, d, d)

J=7 Hz, H20), 4.14 (1H, dd, *J*=8, 5 Hz, H16), 4.59 (2H, s). **34**: Colorless glass. HRMS Calcd for C₂₈H₄₃NO₇: 505.3037. Found: 505.3022. MS (m/z): 505 (M⁺, 1), 404 (13), 360 (24), 316 (19), 299 (34), 298 (25), 271 (9), 254 (9), 59 (12), 57 (100), 45 (60), 41 (21). IR (CHCl₃) cm⁻¹: 1706, 1678. ¹H NMR (at 50 °C) δ: 0.99 (3H, s), 1.16–1.96 (9H, m, including OH), 1.42 (1H, d, J=1.5 Hz, H9), 1.48 (9H, s), 1.57 (1H, d, J=6.5 Hz, H5), 1.61 (1H, dd, J=14.5, 5.5 Hz, H15), 1.77 (1H, dd, J=16, 8 Hz, H7), 1.90 (1H, dd, J=14.5, 9.5 Hz, H15), 2.26–2.30 (1H, m, H12), 2.59 (1H, br d, J=16 Hz, H7), 3.18 (1H, br d, J=10.5 Hz, H19), 3.31–3.39 (1H, m), 3.33 (3H, s), 3.40 (1H, d, J=10.5 Hz, H19), 3.46–3.55 (1H, m), 3.61–3.66 (2H, m), 4.01 (1H, dd, J=8, 6.5 Hz, H6), 4.02 (1H, d, J=7 Hz, H20), 4.04–4.12 (1H, m, H16), 4.60 (2H, s).

4.2.8. Oxidation of 33 and 34 to form 35. The procedure from 33 was typical. To a cooled (0 °C) solution of 33 (1.5 mg, 2.97 µmol) in CH₂Cl₂ (2 ml) was added PCC-Al₂O₃ (20 wt %, 16 mg, 14.8 μmol) and the mixture was stirred at 0 °C for 5 min and at 25 °C for 1.5 h. Saturated NaHCO3-H2O was added and the whole was extracted with CH₂Cl₂. Usual work-up and purification by PTLC [hexane–EtOAc (2:1)] yielded **35** (1.5 mg, quantitative) as a colorless glass. HRMS Calcd for C₂₈H₄₁NO₇: 503.2881. Found: 503.2875. MS (m/z): 503 $(M^+, 2)$, 447 (1), 402 (8), 358 (23), 314 (14), 297 (18), 269 (10), 57 (100), 45 (64), 41 (24). IR (CHCl₃) cm⁻¹: 1734, 1698, 1680. ¹H NMR (at 50 °C) δ: 1.02 (3H, s), 1.23–1.74 (6H, m), 1.49 (9H, s), 1.65 (1H, d, J=6 Hz), 1.68 (1H, dd, J=14, 9.5 Hz, H13), 1.87-1.95 (1H, m), 1.91 (1H, dd, J=16, 8 Hz), 2.16 (1H, d. J=19.5 Hz, H15), 2.39 (1H, dd, J=14, 4.5 Hz, H13), 2.51 (1H, br dd, J=9.5, 6.5 Hz, H14), 2.62 (1H, d, J=19.5 Hz, H15), 2.76 (1H, br d, J=16 Hz), 3.11 (1H, d, J=4.5 Hz, H12), 3.21 (1H, br d, J=11 Hz, H19), 3.33 (3H, s), 3.36–3.44 (1H, m), 3.42 (1H, d, *J*=11 Hz, H19), 3.46– 3.55 (1H, m), 3.62-3.67 (2H, m), 4.09 (1H, dd, J=8, 6 Hz, H6), 4.16 (1H, d, J=6.5 Hz), 4.59 (2H, s). In the same manner, 35 (1 mg, quantitative) was obtained from 34 (1 mg, 1.98 μmol) by oxidation with PCC-Al₂O₃ (20 wt %, 11 mg, 10.2 μmol).

4.2.9. Hydroboration-oxidation of 16 to form 36, 37, and **38.** As described in the text, the reproducibility of this reaction is low. The following was the best result. BH₃·SMe₂ (64 μl, 0.674 mmol) was added to a cooled (0 °C) solution of **16** (11 mg, 22.4 µmol) in THF (2.5 ml) under an Ar atmosphere and the mixture was stirred at 0-24 °C for 15 h. After the mixture had been cooled again in an ice bath, EtOH (76 μl, 1.35 mmol) was added and the mixture was vigorously stirred for 5 min. NaOH-H₂O (1 N, 0.90 ml, 0.90 mmol) and $H_2O_2-H_2O$ (30%, 203 µl, 1.79 mmol) were successively added, and the whole was further stirred at 0 °C for 30 min and at 25 °C for 5 h. Saturated NH₄Cl-H₂O and saturated Na₂S₂O₃-H₂O were added and the whole was extracted with CH2Cl2. Usual work-up followed by separation by PTLC (3% MeOH-CH₂Cl₂) afforded **36** (5.5 mg, 48%), **37** (3 mg, 26%), and **38** (2 mg, 18%) in order of decreasing polarity. 36: Colorless glass. HRMS Calcd for C₂₈H₄₇NO₇: 509.3350. Found: 509.3334. MS m/z: 509 (M⁺, 1), 420 (3), 408 (13), 364 (29), 320 (19), 302 (23), 57 (100), 45 (76), 41 (27). IR (CHCl₃) cm⁻¹: 1674. ¹H NMR (at 50 °C) δ : 0.94 (3H, s), 0.98 (1H,

ddd, J=13, 10, 4.5 Hz, H1), 1.11-1.16 (1H, m), 1.31 (1H, ddd, J=13.5, 11, 4.5 Hz, H3), 1.40–2.15 (15H, m, including $OH \times 2$), 1.46 (9H, s), 1.56 (1H, d, J=7 Hz, H5), 3.14–3.29 (1H, m), 3.30 (1H, d, J=10.5 Hz, H19), 3.36 (3H, s), 3.44–3.52 (1H, m), 3.58–3.79 (5H, m), 4.01–4.10 (1H, m, H6), 4.04 (1H, d, J=6.5 Hz, H20), 4.22 (1H, dddd, J=10, 10, 7.5, 7.5 Hz, H12), 4.63 (2H, s). 37: Colorless glass. HRMS Calcd for C₂₈H₄₇NO₇: 509.3350. Found: 509.3345. MS m/z: 509 (M⁺, 0.6), 420 (5), 408 (10), 364 (5), 320 (18), 302 (52), 284 (32), 258 (11), 57 (100), 45 (78), 41 (30). IR (CHCl₃) cm⁻¹: 1674. ¹H NMR (at 50 °C) δ : 0.91– 1.03 (1H, m), 0.96 (3H, s), 1.08 (1H, br s), 1.33 (1H, ddd, J=13.5, 12, 5 Hz, H3), 1.43-1.87 (8H, m, including OH),1.47 (9H, s), 1.55 (1H, d, J=6.5 Hz, H5), 2.00-2.10 (1H, m), 2.13-2.19 (1H, m), 2.18-2.28 (1H, m), 2.36 (1H, ddd, J=13.5, 4, 4 Hz, H1), 3.21 (1H, br d, <math>J=10 Hz, H19), 3.34(1H, d, J=10 Hz, H19), 3.36 (3H, s), 3.46-3.53 (1H, m),3.61-3.83 (6H, m, including H12), 4.05 (1H, dd, J=8.5, 6.5 Hz, H6), 4.18 (1H, d, J=6.5 Hz, H20), 4.63 (2H, s), 4.78 (1H, *J*=10 Hz, CHO*H*). **38**: Colorless syrup. HRMS Calcd for C₂₈H₄₇NO₆: 493.3401. Found: 493.3376. MS m/z: 493 (M⁺, 1), 404 (4), 392 (18), 348 (34), 304 (22), 287 (29), 256 (25), 57 (100), 45 (75), 41 (30). IR (CHCl₃) cm⁻¹: 1672. ¹H NMR (at 50 °C) δ : 0.90–1.01 (1H, m), 0.94 (3H, s), 1.03 (1H, br s, H9), 1.16 (1H, br s, OH), 1.25–1.38 (2H, m), 1.39–1.56 (3H, m), 1.46 (9H, s), 1.58– 1.72 (5H, m), 1.60 (1H, d, *J*=7.5 Hz, H5), 1.72–1.90 (1H, m, H2), 1.93–2.16 (4H, m), 2.10 (1H, dd, J=15.5, 9.5 Hz, H7), 3.15-3.29 (1H, br m), 3.33 (1H, d, J=11 Hz, H19), 3.36 (3H, s), 3.49 (1H, ddd, J=10.5, 5, 4.5 Hz), 3.57-3.78(5H, m), 4.03 (1H, d, J=6.5 Hz, H20), 4.64 (2H, s).

4.2.10. Respective oxidation of 36 and 37 to form 39 and **40.** The procedure for the preparation of **39** from **36** is described as a representative example. To a cooled (0 °C) solution of **36** (16 mg, $31.4 \mu mol$) in CH_2Cl_2 (2.5 ml) were added TEMPO (0.5 mg, 3.21 μmol) and PhI(OAc)₂ (11 mg, 34.2 µmol), and the mixture was stirred at the same temperature for 20 min and at 25 °C for 6 h. Saturated Na₂S₂O₃-H₂O was added and the mixture was extracted with CH₂Cl₂. The organic layer was successively washed with saturated NaHCO₃-H₂O and H₂O, then treated as usual. The resulting residue was separated by PTLC (3% MeOH-CH₂Cl₂) to afford 39 (12 mg, 75%) along with recovered **36** (1 mg, 6%) in order of increasing polarity. **39**: Colorless glass. HRMS Calcd for C₂₈H₄₅NO₇: 507.3193. Found: 507.3178. MS m/z: 507 (M⁺, 0.4), 489 (2), 408 (13), 406 (7), 388 (8), 362 (17), 344 (14), 318 (13), 300 (17), 283 (16), 57 (100), 45 (76), 41 (29). IR (CHCl₃) cm⁻¹: 1714, 1674. ¹H NMR (at 50 °C) δ : 0.95 (3H, s), 1.01 (1H, ddd, J=13, 10, 5 Hz, H1), 1.20–2.25 (12H, m, including OH), 1.45 (9H, s), 1.60 (1H, d, J=7 Hz, H5), 2.25-2.34 (1H, m), 2.63 (1H, br d, J=16.5 Hz, CH_2CHO), 2.77 (1H, br d, J=16.5 Hz, CH_2 CHO), 3.23 (1H, br d, J=10.5 Hz, H19), 3.31 (1H, d, J=10.5 Hz, H19), 3.36 (3H, s), 3.47-3.55 (1H, m), 3.59-3.71 (3H, m), 4.02-4.11 (1H, m), 4.09 (1H, d, J=6.5 Hz, H20), 4.26 (1H, dddd, J=10, 10, 7.5, 7.5 Hz, H12), 4.64 (2H, s), 9.85 (1H, dd,J=2, 2 Hz, CHO). In the same manner as above, 40 (6 mg, 75%) was obtained from 37 (8 mg, 15.7 µmol) as a colorless glass after PTLC (2% MeOH-CH2Cl2). HRMS Calcd for C₂₈H₄₅NO₇: 507.3193. Found: 507.3185. MS *m/z*: 507 $(M^+, 0.7), 418 (5), 406 (11), 362 (11), 318 (24), 300 (47),$

282 (23), 57 (100), 45 (74), 41 (27). IR (CHCl₃) cm⁻¹: 1714, 1676. ¹H NMR (at 50 °C) δ : 0.97 (3H, s), 0.99 (1H, ddd, J=13.5, 11, 4 Hz, H1), 1.29–1.33 (1H, m, H9), 1.34 (1H, ddd, J=13.5, 12.5, 4.5 Hz, H3), 1.44–1.83 (4H, m), 1.46 (9H, s), 1.59 (1H, d, J=7 Hz, H5), 1.90–2.05 (2H, m), 2.06–2.22 (2H, m), 2.32–2.46 (3H, m), 2.42 (1H, dd, J=16, 2 Hz, CH₂CHO), 2.55 (1H, dd, J=16, 2 Hz, CH₂CHO), 3.23 (1H, br d, J=11 Hz, H19), 3.35 (1H, d, J=11 Hz, H19), 3.36 (3H, s), 3.48–3.57 (1H, m), 3.64–3.81 (3H, m), 4.07 (1H, dd, J=8, 7 Hz, H6), 4.23 (1H, d, J=7 Hz, H20), 4.63 (2H, s), 4.81 (1H, d, J=10 Hz, OH), 9.85 (1H, dd, J=2, 2 Hz, CHO).

4.2.11. Conversion of 39 and 40 to 41 and 42, respectively. The procedure for the preparation of 41 from 39 was typical. K₂CO₃ (18 mg, 0.130 mmol) was added to a solution of **39** (11 mg, 21.7 µmol) and dimethyl (1-diazo-2-oxopropyl)phosphonate (33 mg, 0.172 mmol) and the mixture was stirred under an Ar atmosphere at 25 °C for 3.5 h. Saturated NH₄Cl-H₂O was added and the whole was extracted with CH₂Cl₂. Usual work-up followed by PTLC [benzene-EtOAc (3:1)] furnished **41** (10.5 mg, 96%) as a colorless glass. HRMS Calcd for C₂₉H₄₅NO₆: 503.3244. Found: 503.3260. MS m/z: 503 (M⁺, 1), 414 (2), 402 (13), 358 (38), 314 (19), 297 (26), 278 (7), 57 (100), 45 (76), 41 (26). IR (CHCl₃) cm⁻¹: 2116, 1674. ¹H NMR (at 50 °C) δ : 0.95-1.04 (1H, m, H1), 0.96 (3H, s), 1.24-1.28 (1H, m, H9), 1.32 (1H, ddd, J=13.5, 11.5, 4.5 Hz, H3), 1.41–1.70 (5H, m, including OH), 1.47 (9H, s), 1.58 (1H, d, J=7 Hz, H5), 1.72-1.86 (1H, m), 1.86-2.06 (3H, m), 1.93 (1H, dd, $J=2.5, 2.5 \text{ Hz}, C \equiv CH), 2.13-2.19 \text{ (1H, m)}, 2.20 \text{ (1H, br)}$ d. J=16.5 Hz, $CH_2C\equiv CH$), 2.25–2.54 (3H, m), 3.23 (1H, br d, J=10.5 Hz, H19), 3.32 (1H, d, J=10.5 Hz, H19), 3.36 (3H, s), 3.44-3.55 (1H, m), 3.57-3.70 (3H, m), 4.09 (1H, d, J=6.5 Hz, H20), 4.24 (1H, dddd, J=10, 10, 7.5, 7.5 Hz, H12), 4.63 (2H, s). In the same manner, 42 (4.5 mg, 91%) was obtained from **40** (5 mg, 9.86 μmol) as a colorless glass after separation by PTLC [hexane-EtOAc (3:2)]. HRMS Calcd for $C_{29}H_{45}NO_6$: 503.3244. Found: 503.3254. MS m/z: 503 (M⁺, 2), 414 (10), 402 (14), 358 (12), 314 (22), 297 (31), 296 (72), 278 (27), 57 (100), 45 (70), 41 (27). IR (CHCl₃) cm⁻¹: 2112, 1675. ¹H NMR (at 50 °C) δ : 0.97 (3H, s), 0.98 (1H, ddd, J=13.5, 11.5, 4 Hz, H1), 1.16–1.22 (1H, m), 1.33 (1H, ddd, J=13.5, 12, 5 Hz, H3), 1.48 (9H, s), 1.48–1.81 (4H, m), 1.57 (1H, d, $J=7 \text{ Hz}, \text{ H5}), 1.92-1.99 \text{ (3H, m, H11}\times2 \text{ and C}\equiv\text{CH)},$ 2.13–2.31 (4H, m, H7, H14, and $CH_2C \equiv CH$), 2.16 (1H, ddd, J=16, 7, 3 Hz, H13), 2.36 (1H, ddd, J=13.5, 4, 4 Hz, H1), 2.39 (1H, d, J=16 Hz, H7), 3.23 (1H, br d, J=10.5 Hz, H19), 3.36 (3H, s), 3.36 (1H, d, J=10.5 Hz, H19), 3.47–3.55 (1H, m), 3.65–3.81 (4H, m), 4.09 (1H, dd, J=8, 7 Hz, H6), 4.23 (1H, d, J=6 Hz, H20), 4.63 (2H, s), 4.82 (1H, d, J=10 Hz, OH).

4.2.12. Preparation of xanthate 43 from 41. NaH (60% in mineral oil, 22 mg, 0.550 mmol) and imidazole (2 mg, 29.4 μ mol) were added to a solution of **41** (11 mg, 21.9 μ mol) in THF (3 ml) and the mixture was refluxed with stirring under an Ar atmosphere for 3 h. CS₂ (0.33 ml, 5.47 mmol) was added to this and the resulting solution was further refluxed for 40 min, during this time it gradually changed into a yellow-white slurry. MeI (0.41 ml, 6.58 mmol) was further added to this and the whole was heated for 40 min. After

the mixture had been cooled, saturated NH₄Cl-H₂O was added and the resulting mixture was extracted with CH₂Cl₂. The organic layer was washed with saturated NaHCO₃-H₂O and then treated as usual. Separation by PTLC [hexane-EtOAc (3:1)] gave 43 (11 mg, 85%) and recovery of 41 (1 mg, 9%) in order of increasing polarity. 43: Colorless glass. HRMS Calcd for C₃₁H₄₇NO₆S₂: 593.2842. Found: 593.2861. MS m/z: 593 (M⁺, 0.5), 518 (1), 504 (1), 492 (4), 448 (7), 385 (37), 346 (22), 280 (39), 57 (74), 45 (100), 41 (42). IR (CHCl₃) cm⁻¹: 2112, 1675. ¹H NMR (at 50 °C) δ : 0.96 (3H, s), 0.99 (1H, ddd, J=13, 10.5, 4.5 Hz, H1), 1.27-1.38 (2H, m), 1.45-1.55 (1H, m, H2), 1.48 (9H, s), 1.58 (1H, d, J=7 Hz, H5), 1.62–1.75 (3H, m), 1.75– 1.91 (1H, m, H2), 1.95 (1H, dd, J=2.5, 2.5 Hz, C \equiv CH), 2.08-2.18 (1H, m), 2.13 (1H, ddd, J=13, 5, 4.5 Hz, H1), 2.19-2.53 (6H, m), 2.54 (3H, s, SCH₃), 3.23 (1H, br d, J=11 Hz, H19), 3.34 (1H, d, J=11 Hz, H19), 3.35 (3H, s), 3.51 (1H, ddd, J=10.5, 6.5, 4 Hz), 3.60 (1H, ddd, J=10.5, 5, 4 Hz), 3.68 (1H, ddd, J=11, 5, 4 Hz), 3.75 (1H, ddd, J=11, 6.5, 4 Hz), 4.05–4.15 (1H, m, H6), 4.63 (2H, s), 6.03 (1H, dddd, *J*=10, 10, 7.5, 7.5 Hz, H12).

4.2.13. Radical cyclization of 43 to form 44. Bu₃SnH (22 μl, 81.8 μmol) and AIBN (1 mg, 6.10 μmol) were added to a solution of 43 (5 mg, 8.43 µmol) in toluene (5 ml) and Ar gas was bubbled into the mixture for 15 min at an ambient temperature. Then the solution was stirred under reflux for 15 min under an Ar atmosphere. After evaporation of the reaction solvent in vacuo, the residue was separated by PTLC [hexane-EtOAc (4:1)] to provide 44 (3.5 mg, 85%) as a colorless glass. HRMS Calcd for C₂₉H₄₅NO₅: 487.3295. Found: 487.3280. MS m/z: 487 (M⁺, 3), 398 (2), 386 (18), 342 (24), 298 (15), 281 (46), 69 (15), 57 (100), 45 (66), 41 (34). IR (CHCl₃) cm⁻¹: 1674. ¹H NMR (at 50 °C) δ : 0.81– 0.93 (1H, m, H1), 0.97 (3H, s, H18), 1.11 (1H, br d, *J*=10 Hz, H9), 1.25–1.51 (3H, m), 1.46 (9H, s), 1.53 (1H, d, J=6.5 Hz, H5), 1.58–1.82 (5H, m), 1.72 (1H, dd, J=16, 8 Hz, H7), ca. 2.04-2.10 (1H, m, H14), 2.05 (1H, br d, J=16 Hz, H7), 2.11 (1H, br d, J=18 Hz, H15), 2.17 (1H, ddd, J=13, 4.5, 4.5 Hz, H1), 2.26–2.41 (1H, m), 2.38 (1H, ddd, J=18, 2.5, 2 Hz, H15), 3.18 (1H, br d, J=11 Hz, H19), 3.32 (1H, dt, J=10.5, 5 Hz), 3.37 (3H, s), 3.40 (1H, d, J=11 Hz, H19), 3.48 (1H, dt, J=10.5, 5 Hz), 3.68 (2H, dd, J=5, 5 Hz), 3.95 (1H, d, J=6.5 Hz, H20), 3.99 (1H, br dd, J=8, 6.5 Hz, H6), 4.48 (1H, ddd, J=2, 2, 2 Hz, H17), 4.62–4.65 (1H, m, H17), 4.65 (2H, s).

4.3. Preparation of enyne radical cyclization precursors (Scheme 6)

4.3.1. Oxidation of 16 and 18 to form 45 and 46, respectively. The procedure for the preparation of 45 from 16 is described as a representative example. PCC $-Al_2O_3$ (20 wt %, 348 mg, 0.323 mmol) was added to a solution of 16 (53 mg, 0.108 mmol) in CH₂Cl₂ (8 ml) and the mixture was stirred at 0 °C for 1 h. Saturated NaHCO₃-H₂O was added and the whole was filtered through a Celite bed. The filtrate was extracted with CH₂Cl₂. Usual work-up followed by PTLC [hexane-EtOAc (3:1)] afforded **45** (48 mg, 91%) as a colorless glass. HRMS Calcd for C₂₈H₄₃NO₆: 489.3088. Found: 489.3091. MS m/z: 489 (M⁺, 4), 400 (4), 388 (13), 346 (33), 344 (25), 300 (25), 300 (25), 282 (28), 91 (10), 89 (11), 57 (100), 45 (76), 41 (28). IR

(CHCl₃) cm⁻¹: 1713, 1675. 1 H NMR (at 50 $^{\circ}$ C) δ : 0.95 (3H, s), 1.01 (1H, ddd, *J*=12.5, 10, 5.5 Hz, H1), 1.28 (1H, ddd, J=13.5, 11, 5 Hz, H3), 1.39–1.53 (2H, m), 1.46 (9H, s), 1.66 (1H, d, J=7.5 Hz, H5), 1.66 (1H, ddd, J=13.5, 5, 5 Hz, H3), 1.80–1.96 (1H, m), 2.01 (1H, ddd, *J*=12.5, 4.5, 4.5 Hz, H1), 2.09 (1H, dddd, J=19.5, 5, 2, 2 Hz, H11), 2.10–2.36 (3H, m), 2.53 (1H, dd, J=6, 5.5 Hz, H14), 2.67 (2H, br s, CH₂CHO), 3.18–3.30 (1H, br m), 3.30 (1H, br d, J=10.5 Hz, H19), 3.35 (3H, s), 3.40 (1H, dt, J=10.5, 5 Hz), 3.53 (1H, dt, J=10.5, 5 Hz), 3.65 (2H, dd, J=5, 5 Hz), 4.07–4.18 (1H, m, H6), 4.08 (1H, d, J=6 Hz, H20), 4.62 (1H, d, J=6.5 Hz), 4.64 (1H, d, J=6.5 Hz), 5.52-5.63(2H, m), 9.82 (1H, t, J=2 Hz, CHO). In the same manner, **46** (62 mg, 84%) was obtained from **18** (74 mg, 0.141 mmol) as a colorless glass after purification by PTLC [hexane-EtOAc (2:1)]. HRMS Calcd for C₃₁H₄₁NO₆: 523.2932. Found: 523.2918. MS m/z: 523 (M⁺, 2), 480 (1), 478 (1), 434 (6), 390 (15), 388 (10), 351 (9), 298 (4), 91 (100), 89 (6), 45 (38). IR (CHCl₃) cm⁻¹: 1712, 1684. ¹H NMR (at 50 °C) δ : 0.95 (3H, s), 1.01 (1H, ddd, J=12.5, 10, 5.5 Hz, H1), 1.29 (1H, ddd, J=13.5, 11.5, 5 Hz, H3), 1.40-1.56 (2H, m), 1.62-1.72 (1H, m), 1.68 (1H, d, J=7 Hz, H5), 1.88 (1H, ddddd, *J*=12.5, 11, 9.5, 6.5, 4.5 Hz, H2), 2.01 (1H, ddd, J=12.5, 4.5, 4.5 Hz, H1), ca. 2.01–2.39 (4H, m), 2.51 (1H, dd, J=6, 5 Hz, H14), 2.65 (2H, br s, CH_2CHO), 3.18-3.42 (3H, m), 3.33 (3H, s), 3.51 (1H, ddd, J=10.5, 5, 4.5 Hz), 3.60-3.66 (2H, m), 4.06 (1H, d, J=6 Hz, H20), 4.17–4.26 (1H, m), 4.61 (2H, s), 5.10 (1H, d, *J*=12.5 Hz), 5.18 (1H, d, J=12.5 Hz), 5.52–5.62 (2H, m), 7.26–7.37 (5H, m), 9.79 (1H, br s, CHO).

4.3.2. Preparation of envne derivatives 47 and 48 from 45 and 46, respectively. In the same manner as described for the preparation of **41** from **39** (Section 4.2.11), **45** (44 mg, 0.090 mmol) was stirred with dimethyl (1-diazo-2-oxopropyl)phosphonate (86 mg, 0.448 mmol) and K₂CO₃ (49 mg, 0.355 mmol) in MeOH (5 ml) at 0 °C for 5 min and at 25 °C for 4 h. Saturated NH₄Cl-H₂O was added and the whole was extracted with CH₂Cl₂. Usual work-up followed by PTLC [hexane–EtOAc (4:1)] furnished **47** (42 mg, 96%) as a colorless glass. HRMS Calcd for C₂₉H₄₃NO₅: 485.3139. Found: 485.3149. MS m/z: 485 (M⁺, 1), 446 (1), 384 (9), 346 (22), 340 (17), 324 (9), 296 (17), 279 (36), 57 (100), 45 (76), 41 (31). IR (CHCl₃) cm⁻¹: 2116, 1673. ¹H NMR (at 50 °C) δ : 0.95 (3H, s), 0.99 (1H, ddd, J=12.5, 10, 5.5 Hz, H1), 1.27 (1H, ddd, J=13.5, 11.5, 5 Hz, H3), 1.32–1.38 (1H, m, H9), 1.38–1.51 (1H, m, H2), 1.48 (9H, s), 1.61-1.71 (1H, m, H3), 1.64 (1H, d, J=7 Hz, H5), 1.79–1.95 (1H, m, H2), 1.91 (1H, dd, J=2.5, 2.5 Hz, C \equiv CH), 2.00 (1H, ddd, J=12.5, 4.5, 4.5 Hz, H1), 2.08– 2.34 (4H, m, H11×2 and C H_2 C \equiv CH), 2.35–2.42 (1H, m, H14), 2.41-2.64 (2H, m, $H7\times2$), 3.16-3.33 (1H, br m), 3.30 (1H, br d, J=10.5 Hz, H19), 3.35 (3H, s), 3.39 (1H, dt, J=10, 5 Hz), 3.52 (1H, dt, J=10, 5 Hz), 3.65 (2H, dd, J=5, 5 Hz), 4.09 (1H, d, J=6 Hz, H20), 4.16 (1H, br dd, J=8, 7 Hz, H6), 4.62 (1H, d, J=6.5 Hz), 4.64 (1H, d, J=6.5 Hz), 5.50–5.59 (2H, m). In the same manner, 48 (36 mg, 98%) was obtained from **46** (37 mg, 0.071 mmol) as a colorless glass after PTLC [hexane-EtOAc (3:1)]. HRMS Calcd for C₃₂H₄₁NO₅: 519.2982. Found: 519.2984. MS m/z: 519 (M⁺, 1), 480 (2), 430 (5), 386 (11), 294 (4), 280 (4), 91 (100), 45 (38). IR (CHCl₃) cm⁻¹: 2105, 1683. ¹H NMR (at 50 °C) δ : 0.96 (3H, s), 0.99 (1H, ddd, J=13, 10, 5.5 Hz, H1), 1.28 (1H, ddd, J=13.5, 11, 5 Hz, H3), 1.31–1.40 (1H, m, H9), 1.45 (1H, ddddd, J=14.5, 5, 5, 5, 5 Hz, H2), 1.61–1.72 (1H, m), 1.67 (1H, d, J=7 Hz, H5), 1.80–1.96 (1H, m), 1.91 (1H, dd, J=2.5, 2.5 Hz, C \equiv CH), 2.00 (1H, ddd, J=13, 4.5, 4.5 Hz, H1), 2.09–2.30 (4H, m, including CH₂C \equiv CH), 2.34–2.41 (1H, m), 2.45–2.67 (2H, m), 3.23–3.42 (3H, m), 3.33 (3H, s), 3.50 (1H, ddd, J=10.5, 4.5, 4.5 Hz), 3.60–3.65 (2H, m), 4.08 (1H, d, J=6 Hz, H20), 4.25 (1H, ddd, J=9, 7, 1 Hz, H6), 4.59 (1H, d, J=6.5 Hz), 4.62 (1H, d, J=6.5 Hz), 5.12 (1H, d, J=12.5 Hz), 5.20 (1H, d, J=12.5 Hz), 5.49–5.59 (2H, m), 7.26–7.41 (5H, m).

4.3.3. Cleavage of MOM group of 48 to form 9. HCl-H₂O (20%, 1 ml) was added to a cooled (0 °C) solution of 48 (33 mg, 63.6 µmol) in DME (3 ml) and the mixture was stirred for 10 min and at 22 °C for 9 h. Saturated NaHCO₃-H₂O was added and the whole was extracted with CH₂Cl₂. Usual work-up followed by PTLC [hexane-EtOAc (7:4)] provided 9 (29 mg, 96%) as a colorless glass. HRMS Calcd for C₃₀H₃₇NO₄: 475.2721. Found: 475.2719. MS m/z: 475 (M⁺, 3), 430 (3), 386 (8), 370 (4), 340 (9), 91 (100), 65 (5), 45 (8), 41 (4). IR (CHCl₃) cm⁻¹: 2120, 1684. ¹H NMR (at 50 °C) δ : 0.97 (3H, s), 1.02 (1H, ddd, J=13, 10, 5 Hz, H1), 1.31 (1H, ddd, J=13.5, 11.5, 5 Hz,H3), 1.34–1.41 (1H, m, H9), 1.44–1.56 (2H, m, including OH), 1.60–1.71 (1H, m, H3), 1.68 (1H, d, J=7 Hz, H5), 1.71–1.85 (1H, m, H2), 1.91 (1H, dd, J=2.5, 2.5 Hz, $C \equiv CH$), 2.02 (1H, ddd, J=13, 4.5, 4.5 Hz, H1), 2.14–2.32 (4H, m), 2.41 (1H, dd, J=6, 5.5 Hz, H14), 2.46-2.64 (2H, m), 3.27-3.38 (3H, m), 3.43 (1H, ddd, J=9.5, 6.5, 3.5 Hz), 3.58-3.76 (2H. m. CH₂OH), 4.10 (1H. d. J=6 Hz. H20). 4.26 (1H, dd, J=8, 7 Hz, H6), 5.13 (1H, d, J=12.5 Hz), 5.20 (1H, d, J=12.5 Hz), 5.51–5.62 (2H, m), 7.28–7.40 (5H, m).

4.4. C-ring formation from 47 and 9 (Scheme 7, Table 2)

4.4.1. Radical cyclization of 47 to form 44 and 49 (Table 2, runs a-d). The procedure for run c of Table 2 is described as a representative example among runs a-d. A benzene (3 ml) solution of 47 (9 mg, 18.6 μmol), tributyltin hydride (25 μl, 93 µmol), and azobisisobutyronitrile (0.5 mg, 3.05 µmol) was degassed by bubbling of Ar gas for 10 min at 25 °C. The solution was then refluxed with stirring for 2 h under an Ar atmosphere. The solvent was removed in vacuo and the residue was dissolved in CH₂Cl₂ (3 ml). SiO₂ (1.0 g, well-dried prior to use) was added to this and the mixture was stirred at 25 °C for 14 h. The whole was filtered under reduced pressure and the filtered SiO₂ was rinsed with 10% MeOH-CH₂Cl₂. The solvent was evaporated off and the residue was separated by PTLC [hexane-EtOAc (11:1)] to give **44** (3 mg, 33%) and **49** (7.5 mg, 52%). The former was identical with the authentic specimen (see Section 4.2.13) by ¹H NMR and IR. **49**: Colorless glass. HRMS Calcd for $C_{41}H_{71}NO_5Sn$: 777.4349. Found: 777.4383. MS m/z: 778, 777, 776, 775, 774, 773 (M⁺, 0.02, 0.11, 0.15, 0.13, 0.10, 0.10), 721, 720, 719, 718, 717, 716 (11, 27, 14, 21, 11, 11), 677, 676, 675, 674, 673, 672 (1, 2, 1, 2, 1, 1), 621, 620, 619, 618, 617, 616 (0.5, 0.9, 1)0.5, 1, 0.7, 1), 619, 618, 617, 616, 615, 614 (0.5, 1, 0.7, 1, 0.7, 1), 515, 514, 513, 512, 511, 510 (1, 4, 2, 3, 1, 2), 486 (8), 430 (5), 386 (21), 280 (83), 180, 179, 178, 177, 176,

175 (1, 21, 6, 19, 7, 13), 57 (100), 45 (44), 41 (27). IR (CHCl₃) cm⁻¹: 1675. ¹H NMR (at 50 °C) δ : 0.56 (1H, dd, J=7.5, 4 Hz, H12), 0.77 (1H, ddd, J=13, 10, 6 Hz, H1), 0.79–1.00 (10H, m), 0.89 (9H, t, J=7.5 Hz), 0.96 (3H, s, H18), 1.08 (1H, d, J=13 Hz, H17), 1.24–1.68 (16H, m), 1.38 (1H, d, J=6 Hz, H5), 1.47 (9H, s), 1.63 (1H, d, J=12 Hz, H15), 1.71 (1H, dd, J=15, 7 Hz, H7), 1.75 (1H, dd, J=14, 9.5 Hz, H11), 2.01 (1H, dd, J=14, 4 Hz, H11), 2.26 (1H, ddd, J=13, 5, 5 Hz, H1), 2.42 (1H, dd, J=6.5, 4 Hz, H14), 2.50 (1H, br d, J=15 Hz, H7), 3.12 (1H, d, J=10.5 Hz, H19), 3.37 (3H, s), 3.40 (1H, d, J=10.5 Hz, H19), 3.41–3.50 (1H, m), 3.67–3.76 (3H, m), 3.83 (1H, d, J=6.5 Hz, H20), 3.87 (1H, dd, J=7, 6 Hz, H6), 4.65 (1H, d, J=6.5 Hz), 4.68 (1H, d, J=6.5 Hz).

4.4.2. Reductive Pd-catalyzed cyclization of 47 to form 44, 50, and 51 (Table 2, run e). A benzene (2 ml) solution containing 47 (8 mg, 16.5 μmol), poly(methylhydrosiloxane) (21 µl, 0.333 mmol), tris(benzylideneacetone)dipalladium(0)chloroform adduct (2 mg, 1.93 μmol), N,N'-bis(benzylidene)-1,2-ethylenediamine (1 mg, 4.24 µmol), and HOAc (2 µl, 35.0 µmol) was refluxed with stirring under an Ar atmosphere for 30 min. After the mixture had been cooled, saturated NaHCO3-H2O was added and the whole was extracted with CH₂Cl₂. Usual work-up followed by PTLC [hexane-EtOAc (12:1)] afforded crude 50 (2.5 mg), 44 (1.5 mg, 19%), and **51** (2 mg, 25%) in order of increasing polarity. As attempted purification of the crude 50 was unsuccessful, the crude product was treated with OsO4 $(0.5 \text{ mg}, 1.97 \mu\text{mol})$ and $NaIO_4$ (11 mg, 51.4 μ mol) in THF-H₂O (5:1, 1.8 ml) at 0 °C for 10 min and at 25 °C for 14 h in order to isolate 50 without change; this was why the concomitant had vinyl group signals in its ¹H NMR spectrum. Saturated Na₂S₂O₃-H₂O was added and the whole was extracted with CH₂Cl₂. Usual work-up and separation by PTLC [hexane-EtOAc (10:1)] gave pure 50 (1.5 mg, 19%). **50**: Colorless glass. HRMS Calcd for C₂₉H₄₅NO₅: 487.3295. Found: 487.3275. MS m/z: 487 (M⁺, 4), 431 (6), 386 (7), 342 (5), 326 (10), 298 (10), 281 (100), 57 (99), 45 (61), 41 (29). IR (CHCl₃) cm⁻¹: 1674. ¹H NMR (at 50 °C) δ : 0.57 (1H, dd, J=7.5, 4 Hz, H12), 0.77 (1H, ddd, J=13, 9, 5 Hz, H1), 0.81-1.01 (3H, m), 0.96 (3H, s, H18), 1.12 (3H, s, H17), 1.24-1.70 (4H, m), 1.38 (1H, d, J=6 Hz, H5), 1.46 (9H, s), 1.67 (1H, d, J=12 Hz), 1.71 (1H, dd, J=15, 7 Hz, H7), 1.74 (1H, dd, J=14, 9.5 Hz, H11), 2.00 (1H, dd, J=14, 4 Hz, H11), 2.26 (1H, ddd, J=13, 5, 5 Hz), 2.41 (1H, dd, J=6.5, 4 Hz, H14), 2.51 (1H, br d, J=15 Hz, H7), 3.12 (1H, br d, J=11 Hz), 3.37 (3H, s), 3.41 (1H, d, J=11 Hz), 3.42–3.49 (1H, m), 3.67-3.79 (3H, m), 3.84 (1H, d, J=6.5 Hz), 3.87 (1H, dd, J=7, 6 Hz, H6), 4.65 (1H, d, J=6.5 Hz), 4.68 (1H, d, J=6.5 Hz). 51: Colorless glass. HRMS Calcd for $C_{29}H_{45}NO_5$: 487.3295. Found: 487.3282. MS m/z: 487 $(M^+, 2)$, 446 (2), 398 (2), 386 (9), 346 (31), 342 (18), 326 (11), 298 (13), 281 (27), 240 (7), 91 (12), 57 (100), 45 (71), 41 (38). IR (CHCl₃) cm⁻¹: 1673. ¹H NMR (at 50 °C) δ : 0.93 (3H, s), 0.98 (1H, ddd, J=13.5, 10, 5.5 Hz), 1.17– 1.70 (4H, m), 1.47 (9H, s), 1.60 (1H, d, J=7.5 Hz), 1.79-2.04 (3H, m), 2.10-2.35 (5H, m), 2.31 (1H, br dd, J=7, 6 Hz), 3.15-3.30 (1H, br m), 3.28 (1H, br d, J=10 Hz), 3.35 (3H, s), 3.38 (1H, dt, J=10, 5 Hz), 3.52 (1H, dt, J=10, 5 Hz), 3.65 (2H, dd, J=5, 5 Hz), 4.02 (1H, d, J=6 Hz), 4.05–4.16 (1H, m), 4.62 (1H, d, J=6.5 Hz),

4.64 (1H, d, J=6.5 Hz), 4.98–5.06 (2H, m, CH=CH₂), 5.50–5.60 (2H, m, H12, H13), 5.72–5.88 (1H, m, CH=CH₂).

4.4.3. Radical evelization of 9 to form 10, 52, and 53. A toluene (4 ml) solution of tributyltin hydride (74 µl, 0.275 mmol) was added dropwise to a refluxing solution of 9 (13 mg, 27.4 µmol) and azobisisobutyronitrile (1 mg, 6.10 µmol) in toluene (5 ml) during 1.5 h under an Ar atmosphere and then the resulting mixture was further stirred under reflux for 1.5 h. The solvent was removed in vacuo and the residue (95 mg) was dissolved in CH₂Cl₂ (5 ml). SiO₂ (1.5 g, dried in an oven prior to use) was added, and the mixture was stirred at 20 °C for 18 h. The mixture was filtered through a Celite bed and the bed was rinsed with 10% MeOH-CH₂Cl₂. The filtrate was evaporated off and the residue was purified by PTLC [hexane-EtOAc (11:2)] to provide **52** (6.5 mg, 31%), **53** (1 mg, 8%), and **10** (7.5 mg, 57%) in order of increasing polarity. 10: Colorless glass. HRMS Calcd for C₃₀H₃₉NO₄: 477.2877. Found: 477.2885. MS m/z: 477 (M⁺, 1), 432 (3), 388 (5), 342 (9), 298 (9), 91 (100), 65 (10), 45 (15). IR (CHCl₃) cm⁻¹: 1684. ¹H NMR (at 50 °C) δ : 0.90 (1H, ddd, J=13, 10, 5 Hz, H1), 0.99 (3H, s), 1.14 (1H, br d, J=10 Hz, H9), 1.29–1.85 (8H, m, including OH), 1.57 (1H, d, J=6.5 Hz, H5), 1.75 (1H, dd, J=16, 8 Hz, H7), 1.89 (1H, dd, J=13, 4.5 Hz, H13), 1.96-2.11 (2H, m, H12 and H14), 2.11 (1H, d, J=18 Hz, H15), 2.17 (1H, ddd, J=13, 5, 5 Hz, H1), ca. 2.35-2.55 (1H, m, H7), 2.36 (1H, br d, J=18 Hz, H15), 3.23 (1H, ddd, J=9.5, 6, 3.5 Hz, CH_2CH_2OH), 3.28 (1H, br d, J=11 Hz, H19), 3.41 (1H, ddd, J=9.5, 5, 3.5 Hz, CH_2CH_2OH), 3.46 (1H, d, J=11 Hz, H19), 3.67–3.80 (2H, m, CH_2OH), 3.95 (1H, d, J=6.5 Hz, H20), 4.08 (1H, dd, J=8, 6.5 Hz, H6), 4.49 (1H, ddd, J=2.5, 2, 2 Hz, H17), 4.64 (1H, ddd, J=2.5, 2, 2 Hz, H17), 5.11 (1H, d, $J=13 \text{ Hz}, \text{ OC}H_2\text{Ph}), 5.16 (1\text{H}, \text{ br d}, J=13 \text{ Hz}, \text{ OC}H_2\text{Ph}),$ 7.25-7.40 (5H, m). **52**: Colorless glass. MS *m/z*: 712, 711, 710, 709, 708, 707 (M⁺-Bu, 2, 4, 9, 5, 7, 4), 576, 575, 574, 573, 572, 571 (1, 1, 2, 1, 2, 1), 532, 531, 530, 529, 528, 527 (1, 1, 4, 2, 3, 1), 476 (6), 432 (6), 342 (8), 280 (11), 180, 179, 178, 177, 176, 175 (1, 11, 4, 12, 4, 8), 91 (100), 65 (9), 41 (15). IR (CHCl₃) cm⁻¹: 1686. ¹H NMR (at 50 °C) δ : 0.56 (1H, dd, J=7.5, 4 Hz, H12), 0.71–1.03 (10H, m), 0.88 (1H, d, J=13 Hz, H17), 0.89 (9H, t, J=7.5 Hz), 0.98 (3H, s, H18), 1.10 (1H, d, J=13 Hz, H17), 1.24–1.69 (16H, m), 1.42 (1H, d, J=6 Hz, H5), 1.64 (1H, d, J=12 Hz, H15), 1.74 (1H, dd, J=15, 7 Hz, H7),1.78 (1H, dd, J=14, 10 Hz, H11), 2.01 (1H, dd, J=14, 4 Hz, H11), 2.08 (1H, dd, J=6, 6 Hz, OH), 2.26 (1H, ddd, J=12.5, 5, 5 Hz, H1), 2.42 (1H, dd, J=6.5, 3.5 Hz, H14), 2.58 (1H, br d, J=15 Hz, H7), 3.22 (1H, d, J=11.5 Hz, H19), 3.31–3.38 (1H, m), 3.62–3.76 (3H, m), 3.68 (1H, d, J=11.5 Hz, H19), 3.83 (1H, d, J=6.5 Hz, H20), 3.96 (1H, dd, J=7, 6 Hz, H6), 5.11 (1H, d, J=13 Hz, OCH₂Ph),5.15 (1H, d, J=13 Hz, OC H_2 Ph), 7.25–7.44 (5H, m). **53**: Colorless glass. HRMS Calcd for C₃₀H₃₉NO₄: 477.2877. Found: 477.2868. MS m/z: 477 (M⁺, 4), 432 (6), 388 (11), 342 (13), 296 (6), 280 (3), 91 (100), 65 (6), 45 (6). IR (CHCl₃) cm⁻¹: 1681. ¹H NMR (at 50 °C) δ : 0.92–1.05 (1H, m), 1.00 (3H, s, H18), 1.10–1.14 (1H, m, H9), 1.14– 1.75 (7H, m), 1.60 (1H, d, J=7 Hz, H5), 1.79 (1H, br dd, J=6.5, 6.5 Hz, OH), 2.00–2.16 (2H, m), 2.01 (1H, dd, J=16, 8 Hz, H7), 2.11 (1H, br dd, J=7, 5 Hz, H14), ca. 2.23–2.44 (2H, m), 2.45 (1H, br d, J=17 Hz, H15), 2.61–2.68 (1H, m, H13), 3.33 (1H, br d, J=11 Hz, H19), 3.43 (1H, ddd, J=9.5, 5, 4.5 Hz), 3.46 (1H, d, J=11 Hz, H19), 3.63 (1H, ddd, J=9.5, 4.5, 4 Hz), 3.70–3.76 (2H, m), 4.10 (1H, dd, J=8, 7 Hz, H6), 4.14 (1H, d, J=7 Hz, H20), 4.66–4.70 (1H, m, C=CH₂), 4.74–4.78 (1H, m, C=CH₂), 5.11 (1H, d, J=12.5 Hz), 5.16 (1H, d, J=12.5 Hz), 7.26–7.40 (5H, m).

4.4.4. Lemieux oxidation of 53 to form 54. NaIO₄ (9 mg, 42.1 umol) and OsO₄ (0.5 mg, 1.97 umol) were successively added to a solution of 53 (1 mg, 2.10 µmol) in THF (1.5 ml) and H₂O (0.3 ml) at 0 °C and the mixture was stirred for 10 min and then at 21 °C for 14 h. Saturated Na₃S₂O₃-H₂O was added and the whole was extracted with CH₂Cl₂. Usual work-up and PTLC [hexane-EtOAc (3:2)] provided 54 (1 mg, quant.) as a colorless syrup. HRMS Calcd for $C_{29}H_{37}NO_5$: 479.2670. Found: 479.2672. MS m/z: 479 $(M^+, 0.5), 434 (4), 390 (11), 344 (13), 298 (4), 282 (2), 91$ (100), 65 (5), 45 (6). IR (CHCl₃) cm⁻¹: 1730, 1682. ¹H NMR (at 50 °C) δ : 0.99–1.08 (1H, m), 1.03 (3H, s), 1.19– 1.80 (10H, m, including OH), 1.65 (1H, d, J=7 Hz, H5), 1.96 (1H, br d, J=19 Hz, CH_2CO), 2.08–2.18 (1H, m), 2.11 (1H, dd, J=16, 8 Hz, H7), 2.31 (1H, d, J=19 Hz, CH_2CO), 2.35–2.62 (3H, m), 3.35 (1H, d, J=11 Hz, H19), 3.45 (1H, ddd, J=10, 5, 5 Hz), 3.48 (1H, d, J=11 Hz, H19), 3.56 (1H, ddd, J=10, 4, 4 Hz), 3.67–3.79 (2H, m), 4.15 (1H, dd, J=8, 7 Hz, H6), 4.25 (1H, d, J=6 Hz, H20), 5.11 (1H, d, J=12.5 Hz), 5.18 (1H, br d, J=12.5 Hz), 7.28–7.39 (5H, m).

4.4.5. Preparation of 55 from 9. (TMS)₂NLi (1 M in THF. 0.22 ml, 0.22 mmol) was added to a cooled (-78 °C) solution of 9 (7 mg, 14.7 µmol) in THF (2 ml) and the mixture was stirred under an Ar atmosphere for 1.5 h. A THF (0.5 ml) solution of TMSCl (19 µl, 0.150 mmol) was added dropwise to it, and the resulting mixture was stirred at -78to 12 °C for 15.5 h. Saturated NH₄Cl-H₂O and saturated NaHCO₃-H₂O were successively added and the whole was extracted with CH₂Cl₂. Usual work-up gave a residue (12 mg) and this was dissolved in THF (3 ml). Aqueous HCl (2.5%, 0.25 ml) was added to this at 0 °C and the mixture was stirred for 10 min. Quenching with saturated NaHCO₃-H₂O, extraction with CH₂Cl₂, and usual workup followed by PTLC [hexane-EtOAc (5:2)] furnished 55 (6.5 mg, 81%) along with recovered **9** (1 mg, 14%). **55**: Colorless glass. HRMS Calcd for C₃₃H₄₅NO₄Si: 547.3115. Found: 547.3118. MS m/z: 547 (M⁺, 8), 502 (1), 486 (2), 458 (5), 442 (5), 412 (7), 368 (3), 352 (4), 294 (4), 91 (100), 73 (19). IR (CHCl₃) cm⁻¹: 2170, 1683. ¹H NMR (at 50 °C) δ: 0.13 (9H, s, SiMe₃), 0.97 (3H, s), 1.04 (1H, ddd, J=13, 10, 5.5 Hz, H1), 1.31 (1H, ddd, <math>J=13.5, 11, 4.5 Hz,H3), ca. 1.33–1.40 (1H, m), 1.43–1.56 (3H, m, H3 and $CH_2C \equiv CSiMe_3$), 1.64 (1H, ddd, J=13.5, 5, 5 Hz, H3), 1.66 (1H, d, *J*=7 Hz, H5), 1.70–1.85 (1H, m), 1.04 (1H, br s, OH), 2.02 (1H, ddd, J=13, 4.5, 4.5 Hz, H1), 2.10-2.31 (2H, m), 2.36 (1H, dd, J=6, 6 Hz, H14), ca. 2.55–2.74 (1H, m), 2.59 (1H, dd, J=16, 9 Hz, H7), 3.26–3.38 (3H, m), 3.42 (1H, ddd, J=9.5, 6.5, 3.5 Hz), 3.58-3.76 (2H, m), 4.09 (1H, d, J=6 Hz, H20), 4.25 (1H, dd, J=9, 7 Hz, H6), 5.13 (1H, d, J=12 Hz), 5.19 (1H, br d, J=12 Hz), 5.49– 5.58 (1H, m, H13), 5.58 (1H, br dd, J=12, 2.5 Hz, H12), 7.27–7.40 (5H, m).

4.5. Completion of the total synthesis of (±)-nominine (Scheme 9)

4.5.1. Mesylation of 10 to form 56. MsCl (10 μl, 129 μmol) was added to a solution of 10 (7.5 mg, 15.8 μmol) and Et₃N (88 μ l, 0.633 mmol) in CH₂Cl₂ (2 ml) at -20 °C under an Ar atmosphere and the mixture was stirred for 30 min. Saturated NaHCO₃-H₂O was added and the whole was extracted with CH₂Cl₂. The organic layer was successively washed with saturated CuSO₄-H₂O, saturated NaHCO₃-H₂O, and water and then treated as usual. Purification was carried out by PTLC [hexane-EtOAc (2:1)] to provide 56 (8.5 mg, 97%) as a colorless glass. HRMS Calcd for C₃₁H₄₁NO₆S: 555.2652. Found: 555.2668. MS m/z: 555 (M⁺, 0.3), 432 (11), 420 (6), 388 (14), 296 (7), 123 (7), 91 (100), 79 (8). IR (CHCl₃) cm⁻¹: 1684. ¹H NMR (at 50 δ) δ : 0.89 (1H, ddd, J=13, 10, 5.5 Hz, H1), 0.99 (3H, s), 1.14 (1H, d, J=10.5 Hz, H9), 1.30-1.78 (7H, m), 1.57 (1H, d,J=6.5 Hz, H5), 1.75 (1H, dd, J=16, 8 Hz, H7), 1.87 (1H, dd, J=13, 4.5 Hz, H13), 1.96-2.06 (1H, m), 2.05-2.20 (2H, m), 2.11 (1H, d, J=18 Hz, H15), ca. 2.35-2.55 (1H, m, H7), 2.36 (1H, br d, J=18 Hz, H15), 3.00 (3H, s, SO₂CH₃), 3.28 (1H, br d, *J*=11 Hz, H19), 3.28 (1H, ddd, J=11.5, 5.5, 4.5 Hz), 3.43 (1H, d, J=11 Hz, H19), 3.55 (1H, ddd, J=11.5, 5, 4 Hz), 3.95 (1H, d, J=7 Hz, H20), 4.08 (1H, dd, J=8, 6.5 Hz, H6), 4.30–4.36 (2H, m, CH_2OMs), 4.49 (1H, ddd, J=2, 2, 2 Hz, H17), 4.65 (1H, ddd, J=2, 2, 2 Hz, H17), 5.11 (1H, d, J=12.5 Hz), 5.17 (1H, d, J=12.5 Hz), 7.25-7.41 (5H, m).

4.5.2. Preparation of bromide 57 from mesylate 56. Anhydrous LiBr (19 mg, 0.218 mmol) was added to a solution of 56 (8 mg, 14.4 µmol) in acetone (3 ml) and the mixture was stirred under reflux for 15 h. After the mixture had been cooled, saturated NaHCO3-H2O was added and the whole was extracted with CH₂Cl₂. Usual work-up and subsequent separation by PTLC [hexane-EtOAc (5:1)] provided 57 (7 mg, 90%) as a colorless glass. HRMS Calcd for C₃₀H₃₈BrNO₃: 541.2014 and 539.2034. Found: 541.2002 and 539.2039. MS m/z: 541, 539 (M⁺, 0.7, 0.7), 432 (14), 406, 404 (5, 5), 388 (15), 296 (8), 109, 107 (4, 4), 91 (100), 65 (6). IR (CHCl₃) cm⁻¹: 1683. ¹H NMR (at 50 °C) δ : 0.87 (1H, ddd, J=13, 9.5, 5 Hz, H1), 0.99 (3H, s), 1.13 (1H, br d, J=10.5 Hz, H9), 1.28–1.61 (4H, m), 1.57 (1H, d, J=6.5 Hz, H5), 1.63–1.82 (3H, m), 1.75 (1H, dd, J=16, 8.5 Hz, H7), 1.91 (1H, dd, J=13, 4.5 Hz, H13), 1.94–2.04 (1H, m, H14), 2.05–2.11 (1H, m, H12), 2.10 (1H, d, J=18 Hz, H15), 2.21 (1H, ddd, J=13.5, 4.5, 4.5 Hz, H1), ca. 2.35–2.54 (1H, m, H7), 2.36 (1H, br d, *J*=18 Hz, H15), 3.28 (1H, br d, J=10.5 Hz, H19), 3.38–3.50 (4H, m, H19 and CH_2CH_2Br), 3.56–3.68 (1H, m, CH_2CH_2Br), 3.94 (1H, d, J=7 Hz, H20), 4.08 (1H, dd, J=8.5, 6.5 Hz, H6),4.49 (1H, ddd, J=2, 2, 2 Hz, H17), 4.64 (1H, ddd, J=2, 2, 2 Hz, H17), 5.11 (1H, d, J=12.5 Hz), 5.17 (1H, br d, J=12.5 Hz), 7.27–7.41 (5H, m).

4.5.3. Oxidation of **57** to form **58, 59, and 60.** To a slurry of SeO₂ (6 mg, 54.1 μ mol) in CH₂Cl₂ (1.5 ml) was added 70% *t*-BuOOH/H₂O (28 μ l, 0.203 mmol) and the mixture was stirred at 0 °C for 10 min and at 22 °C for 20 min. The mixture was allowed to cool in an ice bath and a CH₂Cl₂ (2.5 ml) solution of **57** (7 mg, 13.0 μ mol) was added to this. After the mixture had been stirred at 0–21 °C for 16 h, saturated

Na₂S₂O₃-H₂O was added and the whole was extracted with CH₂Cl₂. Usual work-up followed by PTLC [hexane-EtOAc (5:2)] afforded **58** (5.5 mg, 77%), **60** (<1 mg, trace), and crude **59** (1.5 mg) in order of increasing polarity. The crude 59 was further purified by PTLC (0.5% MeOH-CH₂Cl₂) to give **59** (1 mg, 14%). **58**: Colorless glass. MS *m/z*: 446 (M⁺-CH₂CH₂Br, 7), 420, 418 (3, 3), 402 (14), 310 (8), 109, 107 (6, 5), 91 (100), 65 (7). IR (CHCl₃) cm⁻¹: 1690, 1628. ¹H NMR (at 50 °C) δ : 0.95 (1H, ddd, J=13, 10, 5 Hz, H1), 1.00 (3H, s), 1.20–1.61 (5H, m), 1.57 (1H, d, J=7 Hz, H5), 1.65–1.86 (2H, m), 1.98 (1H, ddd, J=13.5, 2.5, 2.5 Hz, H11), 2.15 (1H, dd, J=13, 4.5 Hz, H13), 2.20-2.44 (2H, m), 2.25 (1H, ddd, J=13, 4.5, 4.5 Hz, H1), 2.55-2.60 (1H, m, H12), 2.68 (1H, dd, J=17, 8.5 Hz, H7), 3.32 (1H, br d, J=10.5 Hz, H19), 3.42 (1H, d, J=10.5 Hz, H19), 3.43-3.53 (3H, m), 3.57-3.67 (1H, m), 4.05 (1H, d, J=7 Hz, H20), 4.17 (1H, dd, J=8.5, 7 Hz, H6), 5.04 (1H, d, J=2 Hz, H17), 5.13 (1H, d, J=13 Hz), 5.17 (1H, d, J=13 Hz), 5.85 (1H, d, J=2 Hz, H17), 7.26–7.40 (5H, m). **59**: Colorless glass. HRMS Calcd for C₃₀H₃₈BrNO₄: 557.1963 and 555.1983. Found: 557.1988 and 555.2004. MS m/z: 557, 555 (M⁺, 0.4, 0.7), 448 (11), 422, 420 (4, 4), 404 (13), 312 (6), 296 (4), 109, 107 (5, 5), 91 (100), 65 (7). IR (CHCl₃) cm⁻¹: 1681. ¹H NMR (at 50 °C) δ : 0.86– 0.95 (1H, m), 0.99 (3H, s), 1.10 (1H, br d, J=10.5 Hz, H9), 1.28-1.82 (7H, m, including OH), 1.60 (1H, d, J=6.5 Hz, H5), 1.78 (1H, ddd, J=13.5, 3, 3 Hz, H11), 1.91 (1H, dd, J=16, 9 Hz, H7), 1.94 (1H, dd, J=13, 4.5 Hz,H13), 2.15-2.34 (3H, m), 2.78 (1H, br d, J=16 Hz, H7), 3.31 (1H, br d, J=11 Hz, H19), 3.42–3.50 (2H, m), 3.43 (1H, d, J=11 Hz, H19), 3.52-3.74 (2H, m), 3.95 (1H, d, m)J=7 Hz, H20), 3.98 (1H, br s, H15), 4.14 (1H, dd, J=9, 6.5 Hz, H6), 4.91 (1H, dd, J=1.5, 1 Hz, H17), 4.93 (1H, dd, J=1.5, 1 Hz, H17), 5.12 (1H, d, J=12.5 Hz), 5.18 (1H, d, J=12.5 Hz), 7.26-7.40 (5H, m). **60**: Colorless glass. HRMS Calcd for C₃₀H₃₆BrNO₄: 555.1807 and 553.1827. Found: 555.1780 and 553.1823. MS m/z: 555, 553 (M⁺ 0.4, 0.4), 446 (12), 420, 418 (3, 3), 402 (14), 310 (5), 109, 107 (4, 4), 91 (100), 65 (5). ¹H NMR (at 50 °C) only selected signals were given δ : 1.02 (3H, s), 1.65 (1H, d, J=6.5 Hz, H5), 2.36 (1H, dd, J=16, 8.5 Hz, H7), 3.04–3.09 (1H, m), 3.33 (1H, d, J=10.5 Hz, H19), 3.37-3.50 (4H, m), 3.60-3.72 (1H, m), 4.04 (1H, d, J=6.5 Hz, H20), 4.20 (1H, dd, J=8.5, 6.5 Hz, H6), 5.15 (2H, s), 6.77 (1H, s, H15), 7.24– 7.40 (5H, m), 9.41 (1H, s, H17).

4.5.4. Oxidation of **59** to form the enone **58.** MnO $_2$ (12 mg, 0.138 mmol) was added to a solution of **59** (2 mg, 3.60 µmol) in CH $_2$ Cl $_2$ (2 ml) and the mixture was stirred at 20 °C for 15 h. The whole was filtered through a Celite bed and the Celite was washed with CH $_2$ Cl $_2$. The solvent was evaporated off and the residue was purified by PTLC [hexane–EtOAc (3:1)] to give a colorless glass (2 mg, quant.), whose 1 H NMR spectrum was identical with that of the enone **58**.

4.5.5. Reduction of 58 to form β-allyl alcohol **61.** NaBH₄ (3 mg, 78.9 μmol) was added to a solution of **58** (5.5 mg, 9.93 μmol) and CeCl₃·7H₂O (31 mg, 83.2 μmol) in MeOH (2.5 ml) at 0 °C, and the mixture was stirred for 20 min. The reaction was quenched by successive addition of saturated NH₄Cl–H₂O and saturated NaHCO₃–H₂O, and the mixture was extracted with CH₂Cl₂. Usual work-up

followed by separation by PTLC [hexane-EtOAc (2:1)] afforded 61 (5.5 mg, quant.) as a colorless glass. HRMS Calcd for C₃₀H₃₈BrNO₄: 557.1963 and 555.1983. Found: 557.1971 and 555.1969. MS m/z: 557, 555 (M⁺, 0.5, 0.6), 448 (20), 422, 420 (5, 5), 404 (16), 312 (9), 296 (4), 109, 107 (3, 4), 91 (100), 65 (2). IR (CHCl₃) cm⁻¹: 1682. ¹H NMR (at 50 °C) δ : 0.88 (1H, ddd, J=13, 10, 5 Hz, H1), 0.99 (3H, s), 1.20-1.55 (5H, m, including OH), 1.58 (1H, d, J=6.5 Hz, H5), 1.64-1.83 (4H, m), 1.92 (1H, dd, J=13.5, 4.5 Hz, H13), 1.93–2.10 (2H, m), 2.14–2.20 (1H, m, H12), 2.19 (1H, ddd, J=13, 4.5, 4.5 Hz, H1), 2.66 (1H, dd, J=16, 8.5 Hz, H7), 3.30 (1H, br d, J=10.5 Hz, H19), 3.40-3.49 (3H, m), 3.44 (1H, d, J=10.5 Hz, H19), 3.53-3.65 (1H, m), 3.97-4.04 (1H, m, H15), 4.01 (1H, d, J=6.5 Hz, H20), 4.20 (1H, dd, J=8.5, 6.5 Hz, H6), 4.91 (1H, br s, H17), 4.99 (1H, br s, H17), 5.15 (2H, s), 7.28– 7.38 (5H, m).

4.5.6. Acetylation of 59 and 61 to form 62 and 63, respectively. The procedure for the preparation of 63 from 61 is described as a representative example. A solution of 61 $(5 \text{ mg}, 8.99 \mu\text{mol}), Ac_2O (0.2 \text{ ml}), and pyridine (0.3 \text{ ml}) in$ CH₂Cl₂ (1.5 ml) was stirred at 21 °C for 24 h. Saturated NaHCO₃-H₂O was added and the mixture was extracted with CH₂Cl₂. Usual work-up and separation by PTLC [hexane-EtOAc (3:1)] gave 63 (5 mg, 93%) as a colorless glass. HRMS Calcd for C₃₂H₄₀BrNO₅: 599.2068 and 597.2088. Found: 599.2075 and 597.2061. MS (m/z): 599, 597 (M⁺, 0.5, 0.5), 490 (10), 464, 462 (4, 3), 446 (10), 404 (2), 354 (4), 296 (9), 91 (100), 65 (7), 43 (26). IR (CHCl₃) cm⁻¹: 1726, 1683. ¹H NMR of two rotamers (ca. 4:1) at 50 °C δ : (major rotamer) 0.84–0.96 (1H, m), 0.99 (3H, s), 1.16– 1.60 (6H, m), 1.59 (1H, d, J=6.5 Hz, H5), 1.63–1.83 (3H, m), 1.94 (1H, dd, J=13, 4 Hz, H13), 1.96–2.34 (4H, m), 2.09 (3H, s, OCOCH₃), 3.31 (1H, br d, J=11 Hz, H19), 3.42–3.50 (3H, m), 3.43 (1H, d, *J*=11 Hz, H19), 3.55–3.65 (1H, m), 3.99 (1H, d, *J*=7 Hz, H20), 4.06–4.17 (1H, m), 4.80 (1H, br s, H17), 4.87 (1H, br s, H17), 5.10 (1H, d, J=12.5 Hz), 5.16 (1H, d, J=12.5 Hz), 5.49 (1H, dd, J=2, 2 Hz, H15), 7.25–7.40 (5H, m); (minor rotamer) 3.94–3.98 (1H, m), 4.88 (1H, br s, H17), 4.90 (1H, br s, H17), 5.08 (1H, d, J=12.5 Hz), 5.19 (1H, d, J=12.5 Hz), 5.45 (1H, br s, H15). In the same manner, 59 (1 mg, 1.80 μ mol) was acetylated to yield 62 (1 mg, 93%) as a colorless glass after separation by PTLC [hexane-EtOAc (3:1)]. HRMS Calcd for C₃₂H₄₀BrNO₅: 599.2068 and 597.2088. Found: 599.2065 and 597.2113. MS (m/z): 599, 597 (M⁺, 0.6, 0.6), 540, 538 (0.2, 0.2), 490 (15), 464, 462 (5, 4), 446 (13), 354 (6), 296 (11), 91 (100), 43 (17). IR (CHCl₃) cm⁻¹: 1716, 1682. ¹H NMR of two rotamers (ca. 7:1) at 50 °C δ: (major rotamer) 0.83–0.95 (1H, m), 0.99 (3H, s), 1.16-2.06 (6H, m), 1.19 (1H, br d, J=10.5 Hz, H9), 1.48 $(3H, s, OCOCH_3), 1.60 (1H, d, J=6.5 Hz, H5), 1.77 (1H, d)$ ddd, J=13.5, 3, 3 Hz, H11), 1.83 (1H, dd, J=16, 8.5 Hz, H7), 1.95 (1H, dd, *J*=13, 4.5 Hz, H13), 2.14–2.20 (1H, m, H12), 2.21 (1H, ddd, *J*=13, 4.5, 4.5 Hz, H1), 2.30 (1H, br dd, J=9, 7 Hz, H14), ca. 2.38-2.58 (1H, m), 3.31 (1H, br d, J=11 Hz, H19), 3.42–3.50 (3H, m), 3.43 (1H, d, J=11 Hz, H19), 3.58–3.70 (1H, m), 3.97 (1H, d, J=7 Hz, H20), 4.10 (1H, dd, J=8.5, 6.5 Hz, H6), 4.88 (1H, br s, H17), 4.91 (1H, br s, H17), 5.08 (1H, d, J=12.5 Hz), 5.19 (1H, d, *J*=12.5 Hz), 5.44 (1H, br s, H15), 7.24–7.39 (5H, m); (minor rotamer) 4.13–4.19 (1H, m, H6), 4.99 (1H, br s, H17), 5.02 (1H, br s, H17), 5.09 (1H, d, J=12.5 Hz), 5.17 (1H, d, J=12.5 Hz), 5.64 (1H, br s, H15). NOE (ca. 2.1%) was observed at δ =7.24–7.39 on irradiation at δ =1.48 (3H, s).

4.5.7. Reductive deprotection of 63 to form 64. A slurry of 63 (5 mg, 8.36 µmol), Zn powder (110 mg, 1.68 mmol), and NH_4Cl (5 mg, 93.5 µmol) in *i*-PrOH $-H_2O$ (14:1, 3.5 ml) was refluxed with stirring for 5 h. After the mixture had been cooled, saturated NH₄Cl-H₂O was added and the whole was extracted with CH₂Cl₂. Usual work-up and separation by PTLC [hexane–EtOAc (5:2)] provided **64** (4 mg, 97%) as a colorless glass. HRMS Calcd for C₃₀H₃₇NO₅: 491.2670. Found: 491.2657. MS (m/z): 491 (M⁺, 6), 356 (37), 312 (5), 239 (5), 91 (100), 65 (8), 43 (26). IR (CHCl₃) cm⁻¹: 1725, 1682. ¹H NMR of two rotamers (ca. 4:1) at 50 °C δ : (major rotamer) 0.90–1.05 (1H, m), 1.00 (3H, s), 1.17-1.63 (8H, m, including OH), 1.59 (1H, d, J=6.5 Hz, H5), 1.67-1.85 (3H, m), 191-2.29 (4H, m),2.10 (3H, s), 3.28 (1H, br d, J=11 Hz, H19), 3.46 (1H, d,J=11 Hz, H19), 4.13 (1H, dd, J=8.5, 6.5 Hz, H6), 4.49 (1H, d, J=7.5 Hz, H20), 4.77 (1H, br s, H17), 4.86 (1H, br s, H17), 5.08 (1H, d, J=12.5 Hz), 5.16 (1H, d, J=12.5 Hz), 5.51 (1H, br s, H15), 7.26–7.40 (5H, m); (minor rotamer) 4.06–4.13 (1H, m, H6), 4.44–4.50 (1H, m, H20), 4.87 (1H, br s, H17), 4.91 (1H, br s, H17), 5.05 (1H, d, J=12.5 Hz), 5.20 (1H, d, J=12.5 Hz), 5.44 (1H, br s, H15).

4.5.8. Cyclization of 64 to form O-acetylnominine (65). $Pd(OAc)_2$ (1 mg, 4.45 µmol) and Et_3N/CH_2Cl_2 (5% v/v, 13 μl, 4.67 μmol) were successively added to a solution of **64** (4.5 mg, 9.16 μmol) and Et₃SiH (0.22 ml, 1.38 mmol) in CH₂Cl₂ (0.2 ml) under an Ar atmosphere and the mixture was stirred at 23 °C for 3 h. Saturated NaHCO₃-H₂O was added and the mixture was extracted with CH₂Cl₂. Usual work-up gave a residue (37 mg, containing Et₃SiH polymer). The residue was dissolved in CH₂Cl₂ (2.5 ml) and to this were added pyridine (56 µl, 0.693 mmol) and SOCl₂ (20 μl, 0.274 mmol) in this order at 0 °C under an Ar atmosphere. After the mixture had been stirred at the temperature for 30 min and at 22 °C for 48 h, saturated NaHCO₃-H₂O was added and the whole was extracted with CH₂Cl₂. Usual work-up followed by Al₂O₃ column chromatography [20 g, benzene–DME (2:1)] afforded **65** (2.5 mg, 80%) as colorless prisms, mp: 153–155 °C (CH₂Cl₂–hexane). HRMS Calcd for C₂₂H₂₉NO₂: 339.2197. Found: 339.2183. MS (m/z): 339 (M⁺, 100), 324 (5), 311 (4), 296 (14), 280 (17), 160 (12), 146 (32), 91 (13), 79 (14), 55 (15), 43 (62), 41 (24). IR (CHCl₃) cm⁻¹: 1728, 1714. ¹H NMR δ : 0.97 (3H, s, H18), 1.12 (1H, ddd, J=13, 2.5, 2.5 Hz, H13), 1.19–1.33 (2H, m), 1.42–1.50 (1H, m), 1.44 (1H, s, H5), 1.54–1.99 (7H, m), 1.66 (1H, dd, J=13, 3 Hz, H7), 1.71 (1H, dd, J=13, 3 Hz, H7), 1.94 (1H, dd, J=14, 4.5 Hz,H11), 2.07 (3H, s), 2.16–2.21 (1H, m, H12), 2.40 (1H, d, J=12 Hz, H19), 2.54 (1H, d, J=12 Hz, H19), 2.54 (1H, br s, H20), 3.20-3.24 (1H, m, H6), 4.93 (1H, s, H17), 4.97 (1H, s, H17), 5.44 (1H, s, H15). ¹³C NMR δ : 19.6 (CH₂, C2), 21.3 (CH₃, COCH3), 26.4 (CH₂, C11), 26.9 (CH₂, C1), 28.7 (CH₃, C18), 32.6 (CH₂, C7), 33.2 (CH₂, C13), 33.7 (CH, C12), 34.0 (CH₂, C3), 37.8 (C, C4), 43.4 (CH, C9 or C14), 44.1 (CH, C14 or C9), 44.8 (C, C10), 49.5 (C, C8), 60.9 (CH, C5), 62.4 (CH₂, C19), 65.0 (CH, C6), 72.8 (CH, C15), 74.6 (CH, C20), 110.6 (CH₂, C17), 144.6 (C, 16), 170.1 (C, COCH₃).

4.5.9. (\pm)-Nominine (1). A solution of **65** (3 mg, 8.85 μ mol) in 2% w/v K₂CO₃/MeOH (2 ml) was refluxed with stirring for 30 min under an Ar atmosphere. After the mixture had been cooled, water was added and the mixture was extracted with CH₂Cl₂. Usual work-up and purification by Al₂O₃ column chromatography (20 g, 2% MeOH-CH₂Cl₂) provided (\pm)-nominine (1, 2.5 mg, 95%), colorless prisms, mp: 233– 236 °C (MeOH–acetone) [cf. natural nominine, 4 mp: 255– 258 °C (MeOH–acetone)]. HRMS Calcd for C₂₀H₂₇NO: 297.2091. Found: 297.2087. MS (m/z): 297 (M⁺, 100), 282 (6), 280 (5), 269 (6), 160 (9), 148 (11), 146 (30), 105 (10), 91 (18), 79 (10), 77 (12), 55 (12), 53 (10), 41 (22). IR (CHCl₃) cm⁻¹: 2925 (s), 2870 (w), 1648 (w), 1632 (w), 1616 (w), 1578 (w), 1558 (w), 1538 (w), 1520 (w), 1487 (w), 1455 (m), 1437 (w), 1373 (w), 1317 (w), 1130 (w), 1112 (m), 1028 (w), 1002 (m), 980 (w), 938 (w), 902 (w), 882 (w), 846 (w). ¹H NMR δ : 0.98 (3H, s, H18), 1.11 (1H, ddd, J=13, 2.5, 2.5 Hz, H13), 1.19–1.34 (2H, m, H1 and H3), 1.38-1.50 (1H, m, H3), 1.44 (1H, s, H5), 1.56 (1H, dddd, J=14, 10, 3, 1.5 Hz, H11), 1.62-1.90 (7H, m, including OH, H1, H2 \times 2, H9, H13, and H14), 1.68 (1H, dd, J=13, 3 Hz, H7), 1.94 (1H, dd, J=14, 4.5 Hz, H11), 2.05 (1H, dd, J=13, 2.5 Hz, H7), 2.17-2.22 (1H, m, H12), 2.39 (1H, d, <math>J=12 Hz, H19), 2.52 (1H, br s, H20), 2.54 (1H, d, J=12 Hz, H19), 3.24–3.28 (1H, m, H6), 4.01 (1H, br s, H15), 4.94 (1H, dd, J=1.5, 1 Hz, H17), 4.97 (1H, dd, J=1.5, 1 Hz,H17). ¹³C NMR δ: 19.7 (CH₂, C2), 26.7 (CH₂, C11), 27.0 (CH₂, C1), 28.8 (CH₃, C18), 32.7 (CH₂, C7), 33.1 (CH₂, C13), 33.7 (CH, C12), 34.0 (CH₂, C3), 37.8 (C, C4), 43.5 (CH, C9 or C14), 43.9 (CH, C14 or C9), 45.5 (C, C10), 49.6 (C, C8), 60.9 (CH, C5), 62.5 (CH₂, C19), 65.3 (CH, C6), 71.7 (CH, C15), 74.7 (CH, C20), 108.3 (CH₂, C17), 156.5 (C, 16).

4.5.10. Single-crystal X-ray analysis of (\pm) -nominine (1). Crystal data: $C_{20}H_{27}NO$, M=297.44, monoclinic, $P2_1/n$, a=7.059(1) Å, b=11.614(1) Å, c=18.959(1) Å, $\beta=$ 94.44(1)°, V=1549.7(2) Å³, Z=4, $\rho_c=1.275$ g/cm³, F(000)=648, $\lambda = 1.54178 \text{ Å}$, T = 296(1) K, $\mu(\text{Cu K}\alpha) = 5.92 \text{ cm}^{-1}$. crystal size= $0.20\times0.25\times0.30 \text{ mm}^3$, 3336 reflections (2922) independent, R_{int}=0.012) were collected on a Rigaku AFC7R diffractometer. The structure was solved by direct methods (SHELXS-97)²⁷ and 203 variable parameters were refined using the least-squares method on F^2 . The maximum electron density residue: $0.36e^{-1}$ Å³, R_1 [for $I > 2\sigma(I)$]= 0.048 and wR=0.206 (all data) with $R_1 = \sum ||F_0| - |F_c||/\sum |F_0|$ and $wR = \left[\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2\right]^{0.5}$. Crystallographic data for (\pm) -nominine (1) reported in this paper have been deposited at the Cambridge Crystallographic Data Centre, under publication number CCDC 244252. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_ request/cif, by e-mailing data request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk).

Acknowledgements

The authors' thanks are due to Professor Emeritus Shinichiro Sakai and Professor Hiromitsu Takayama of Chiba University for providing a valuable sample of natural nominine. The authors also thank Dr. Koichi Shudo, the director of Itsuu Laboratory, for helpful discussions. A part of this work

was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS).

References and notes

- (a) Pelletier, S. W.; Page, S. W. Nat. Prod. Rep. 1984, 1, 375–386; (b) Pelletier, S. W.; Page, S. W. Nat. Prod. Rep. 1986, 3, 452–475; (c) Yunuzov, M. S. Nat. Prod. Rep. 1991, 8, 499–526; (d) Yunuzov, M. S. Nat. Prod. Rep. 1993, 10, 471–486; (e) Atta-ur-Rahman; Choudhary, M. I. Nat. Prod. Rep. 1995, 12, 361–379; (f) Atta-ur-Rahman; Choudhary, M. I. Nat. Prod. Rep. 1997, 14, 191–203; (g) Atta-ur-Rahman; Choudhary, M. I. Nat. Prod. Rep. 1999, 16, 619–635.
- 2. (a) Stern, E. S. The Alkaloids; Manske, R. H. F., Holmes, H. L., Eds.; Academic: New York, NY, 1954; Vol. 4, pp 275-333; (b) Stern, E. S. The Alkaloids; Manske, R. H. F., Ed.; Academic: New York, NY, 1960; Vol. 7, pp 473-521; (c) Pelletier, S. W.; Keith, L. H. The Alkaloids; Manske, R. H. F., Ed.; Academic: New York, NY, 1970; Vol. 12, pp 1-206; (d) Pelletier, S. W.; Mody, N. V. The Alkaloids; Manske, R. H. F., Rodrigo, R. G. A., Eds.; Academic: New York, NY, 1979; Vol. 17, pp 1-103; (e) Pelletier, S. W.; Mody, N. V. The Alkaloids; Manske, R. H. F., Rodrigo, R. G. A., Eds.; Academic: New York, NY, 1981; Vol. 18, pp 99-216; (f) Amiya, T.; Bando, H. The Alkaloids; Brossi, A., Ed.; Academic: New York, NY, 1988; Vol. 34, pp 95–179; (g) Wang, F.-P.; Liang, X.-T. The Alkaloids; Cordell, G. A., Ed.; Academic: New York, NY, 1992; Vol. 42, pp 151-247; (h) Wang, F.-P.; Liang, X.-T. The Alkaloids; Cordell, G. A., Ed.; Academic: New York, NY, 2002; Vol. 59, pp 1–280.
- 3. Muratake, H.; Natsume, M. Angew. Chem., Int. Ed. 2004, 43, 4646–4649.
- Ochiai, E.; Okamoto, T.; Sakai, S.; Saito, A. Yakugaku Zasshi 1956, 76, 1414–1418.
- Sakai, S.; Yamamoto, I.; Yamaguchi, K.; Takayama, H.; Ito, M.; Okamoto, T. Chem. Pharm. Bull. 1982, 30, 4579–4582.
- Gloer, J. B.; Rinderknecht, B. L.; Wicklow, D. T.; Dowd, P. F. J. Org. Chem. 1989, 54, 2530–2532.

- (a) Muratake, H.; Natsume, M. Tetrahedron Lett. 1997, 38, 7581–7582;
 (b) Muratake, H.; Nakai, H. Tetrahedron Lett. 1999, 40, 2355–2358;
 (c) Muratake, H.; Natsume, M.; Nakai, H. Tetrahedron 2004, 60, 11783–11803.
- Muratake, H.; Natsume, M. Tetrahedron Lett. 2002, 43, 2913– 2917.
- Muratake, H.; Natsume, M. Tetrahedron 2006, 62, 7056–7070.
- Muratake, H.; Natsume, M. Tetrahedron 2006, 62, 7071– 7092.
- Umbreit, M. A.; Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 5526–5528.
- Chidambaram, N.; Chandrasekaran, S. J. Org. Chem. 1987, 52, 5048–5051.
- 13. Pearson, A. J.; Chen, Y.-S.; Hsu, S.-Y.; Ray, T. *Tetrahedron Lett.* **1984**, *25*, 1235–1238.
- 14. Muzart, J. Tetrahedron Lett. 1987, 28, 4665-4668.
- 15. Ohira, S. Synth. Commun. 1989, 19, 561–564.
- De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J. Org. Chem. 1997, 62, 6974–6977.
- 17. Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574–1585.
- Stork, G.; West, F.; Lee, H. Y.; Isaacs, R. C. A.; Manabe, S. J. Am. Chem. Soc. 1996, 118, 10660–10661.
- Trost, B. M.; Rise, F. J. Am. Chem. Soc. 1987, 109, 3161–3163.
- 20. Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734–736.
- Toyota, M.; Yokota, M.; Ihara, M. Tetrahedron Lett. 1999, 40, 1551–1554.
- Kawazoe, Y.; Sato, Y.; Natsume, M.; Hasegawa, H.; Okamoto, T.; Tsuda, K. *Chem. Pharm. Bull.* **1962**, *10*, 338–344.
- (a) Birkofer, L.; Bierwirth, E.; Ritter, A. Chem. Ber. 1961,
 94, 821–824; (b) Sakaitani, M.; Kurokawa, N.; Ohfune, Y.
 Tetrahedron Lett. 1986, 27, 3753–3754.
- Sakai, S.; Yamamoto, I.; Okamoto, T. Chem. Pharm. Bull. 1982, 30, 4583–4584.
- 25. Jacobs, W. A.; Craig, L. C. J. Biol. Chem. 1942, 143, 605.
- 26. Przybylska, M. Can. J. Chem. 1962, 40, 566-568.
- 27. Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467-473.